精英家教网 > 高中数学 > 题目详情
对任意实数x,[x]表示不超过x的最大整数,如[3.6]=3,[-3.6]=-4,关于函数f(x)=[
x+1
3
-[
x
3
]],有下列命题:
①f(x)是周期函数;
②f(x)是偶函数;
③函数f(x)的值域为{0,1};
④函数g(x)=f(x)-cosπx在区间(0,π)内有两个不同的零点,
其中正确的命题为
 
(把正确答案的序号填在横线上).
考点:命题的真假判断与应用
专题:函数的性质及应用
分析:根据函数f(x)的表达式,结合函数的周期性,奇偶性和值域分别进行判断即可得到结论.
解答: 解:∵f(x+3)=[
x+4
3
-[
x+3
3
]]=[
x+1
3
+1-[
x
3
+1]]=f(x),∴f(x)是周期函数,3是它的一个周期,故①正确.
f(x)=[
x+1
3
-[
x
3
]]=
0,x∈[0,2)
1,x∈[2,3)
,结合函数的周期性可得函数的值域为{0,1},则函数不是偶函数,故②错,③正确.
f(x)=[
x+1
3
-[
x
3
]]=
0,x∈[0,2)∪[3,π)
1,x∈[2,3)
,故g(x)=f(x)-cosπx在区间(0,π)内有3个不同的零点
1
2
3
2
,2,故④错误.
则正确的命题是①③,
故答案为:①③
点评:本题主要考查与函数性质有关的命题的真假判断,正确理解函数f(x)的意义是解决本题的关键.综合性较强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数y=|1-
1
x
-
1
x-1
|最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=
4-x2
2
的图象是曲线C.
(Ⅰ)在如图的坐标系中作出曲线C的示意图,并标出曲线C与x轴的左、右交点A1,A2
(Ⅱ)设P是曲线C上位于第一象限的任意一点,过A2作A2R垂直于直线A1P于R,设A2R与曲线C交于Q,求直线PQ斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sinx+cosx,f′(x)是f(x)的导数,若f(x)=2f′(x),则
sin2x-cos2x
cos2x
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于实数x,当且仅当n≤x<n+1时,n∈N*,[x]=n,则不等式4[x]2-36[x]+45<0的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程mx2+ny2=1表示焦点在y轴上椭圆的充要条件是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图平面内有三个向量
OA
OB
OC
,其中
OA
OB
的夹角为120°,
OA
OC
的夹角为30°,|
OA
|=|
OB
|=1,|
OC
|=4
3
.若
OC
OA
OB
(λ,μ),则λ+μ的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知空间中不共面的四个点A、B、C、D,每2个点之间均可连一条线段,任意取出三条线段中,A、B、C、D四个点均在这三条线段的端点中的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆的中心在原点,长轴长为10,一个焦点坐标为(-3,0),则该椭圆的标准方程是
 

查看答案和解析>>

同步练习册答案