精英家教网 > 高中数学 > 题目详情
9.已知中心在原点的双曲线C的右焦点为F(4,0),离心率等于$\frac{4}{3}$,则C的方程是(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{5}$=1B.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{7}$=1C.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{25}$=1

分析 由已知得双曲线焦点在x轴上,设出双曲线方程,由焦点坐标和离心率列出方程组,由此能求出双曲线的方程.

解答 解:∵中心在原点的双曲线C的右焦点为F(4,0),离心率等于$\frac{4}{3}$,
∴设双曲线方程为$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$,
由已知得$\left\{\begin{array}{l}{c=4}\\{\frac{c}{a}=\frac{4}{3}}\\{{a}^{2}+{b}^{2}={c}^{2}}\end{array}\right.$,
解得$a=3,b=\sqrt{7},c=4$,
∴双曲线C的方程为:$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{7}=1$.
故选:B.

点评 本题考查双曲线方程的求法,是基础题,解题时时要认真审题,注意双曲线性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.函数y1=|x+2|-|x一1|与函数y2=a的图象没有公共点.求实数a的范围.

查看答案和解析>>

科目:高中数学 来源:2017届广东华南师大附中高三综合测试一数学(理)试卷(解析版) 题型:选择题

设全集,集合,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.“抢红包”的网络游戏有多种玩法,小明在十八岁生日举行成人礼时参加一种接龙红包游戏;小明在红包里装了9元现金,然后发给好友甲,并给出金额所在区间[1,9],让甲猜(所猜金额为整数元;下同),如果甲猜中,甲将获得红包里的金额;如果甲未猜中,甲和当前的红包转给好友乙,同时给出金额所在区间[6,9],让乙猜,如果乙猜同,甲和乙可以平分红包里的金额;如果乙未猜中,乙要将当前的红包转发给好友丙,同时给出金额所在区间[8,9],让丙猜,如果丙猜中,甲、乙和丙可以平分红包里的金额,如果丙未猜中,红包里的资金将退回小明的帐户.
(1)求丙得到的0元的概率;
(2)从概率统计的角度而言,甲所获得的金额是否超过乙和丙两人所获得的金额之和?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=2x+x,g(x)=x-log${\;}_{\frac{1}{2}}$x,h(x)=log2x-$\sqrt{x}$的零点分别为x1,x2 ,x3,则x1,x2 ,x3的大小关系是x1<x2<x3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.给出下列四个命题:
①若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$或$\overrightarrow{a}$=-$\overrightarrow{b}$;
②若$\overrightarrow{AB}$=$\overrightarrow{DC}$,则四边形ABCD为平行四边形;
③若$\overrightarrow{a}$与$\overrightarrow{b}$同向,且|$\overrightarrow{a}$|>|$\overrightarrow{b}$|,则$\overrightarrow{a}$>$\overrightarrow{b}$;
④λ,μ为实数,若λ$\overrightarrow{a}$=μ$\overrightarrow{b}$,则$\overrightarrow{a}$与$\overrightarrow{b}$共线.
其中假命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱锥A-BOC中,AO⊥平面COB,∠OAB=∠OAC=$\frac{π}{6}$,AB=AC=2,BC=$\sqrt{2}$,D,E分别为AB,OB的中点.
(1)求证:CO⊥平面AOB;
(2)在线段CB上是否存在一点F,使得平面DEF∥平面AOC,若存在,试确定F的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x-1+$\frac{a}{{e}^{x}}$(a∈R,e为自然对数的底数).
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-1与曲线y=f(x)相切,求l的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{a}{x}$-|x-a|,(a>0,x>0),
(1)求f(x)的单调区间;
(2)当x∈(0,4]时,若f(x)≥x-3恒成立,求a的取值集合.

查看答案和解析>>

同步练习册答案