精英家教网 > 高中数学 > 题目详情
若函数f(x)=
1-(
a
2
)x,x≥0
 1-bx   ,   x<0
(a>0
且a≠2,b>0且b≠1)的图象关于y轴对称,则a+8b的最小值为
 
考点:指数函数的图像与性质
专题:综合题,函数的性质及应用
分析:由题意可得f(-1)=f(1),可得ab=2,利用基本不等式可求答案.
解答: 解:∵f(x)的图象关于y轴对称,
∴f(-1)=f(1),即1-
1
b
=1-
a
2

∴ab=2,又a>0,b>0,
∴a+8b≥2
a•8b
=2
16
=8,当且仅当a=8b时取等号,
ab=2
a=8b
解得a=4,b=
1
2
,即a=4,b=
1
2
时a+8b取最小值8,
故答案为:8.
点评:本题考查指数函数的图象和性质、基本不等式求函数最值,利用基本不等式求最值时注意条件:一正、二定、三相等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的离心率为
2
,且过P(
5
,1)
,过右焦点F作两渐近线的垂线,垂足为M,N.
(1)求双曲线C的方程;
(2)求四边形OMFN的面积(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

若点P在抛物线y2=4x上,求点P到A(2,3)的距离与点P到焦点的距离之差的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
(1)
sin(540°-x)
tan(900°-x)
1
tan(450°-x)tan(810°-x)
cos(360°-x)
sin(-x)

(2)
sin(2π-α)cos(π+α)cos(
π
2
+α)cos(
11π
2
-α)
cos(π-α)sin(3π-α)sin(-π-α)sin(
2
+α)

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆Q1x2+y2=1与圆Q2:(x-3)2+y2=r2(r>0)外切,则r的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若等差数列{an}的前n项和为Sn,则S2n-1=(2n-1)an.由类比推理可得:在等比数列{bn}中,若其前n项的积为Pn,则P2n-1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z满足-1+2i=z•i,则复数z=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(2x+1)=4x2+3.则f(5)=
 
,f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f(x)<f′(x),且f(0)=2,则不等式
f(x)
ex
>2
的解集为(  )
A、(-∞,0)
B、(0,+∞)
C、(-∞,2)
D、(2,+∞)

查看答案和解析>>

同步练习册答案