【题目】在平面直角坐标系
中,以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,
,直线
:
(
为参数,
).
(Ⅰ)求直线
的普通方程;
(Ⅱ)在曲线
上求一点
,使它到直线
的距离最短,并求出点
的极坐标.
科目:高中数学 来源: 题型:
【题目】(1)若直角三角形两直角边长之和为12,求其周长
的最小值;
(2)若三角形有一个内角为
,周长为定值
,求面积
的最大值;
(3)为了研究边长
满足
的三角形其面积是否存在最大值,现有解法如下:
(其中
, 三角形面积的海伦公式),
∴![]()
![]()
,
而
,
,
,则
,
但是,其中等号成立的条件是
,于是
与
矛盾,
所以,此三角形的面积不存在最大值.
以上解答是否正确?若不正确,请你给出正确的答案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程](10分)
在极坐标系中,圆C的极坐标方程为
,若以极点O为原点,极轴为x轴的正半轴建立平面直角坐标系.
(1)求圆C的一个参数方程;
(2)在平面直角坐标系中,
是圆C上的动点,试求
的最大值,并求出此时点P的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法:①对于独立性检验,
的值越大,说明两事件相关程度越大,②以模型
去拟合一组数据时,为了求出回归方程,设
,将其变换后得到线性方程
,则
的值分别是
和
,③某中学有高一学生400人,高二学生300人,高三学生200人,学校团委欲用分层抽样的方法抽取18名学生进行问卷调查,则高一学生被抽到的概率最大,④通过回归直线
=
+
及回归系数
,可以精确反映变量的取值和变化趋势,其中正确的个数是
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,三棱锥
中,平面
平面
,
是边长为4,的正三角形,
是顶角
的等腰三角形,点
为
上的一动点.
![]()
(1)当
时,求证:
;
(2)当直线
与平面
所成角为
时,求二面角
的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com