精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线为参数,).

(Ⅰ)求直线的普通方程;

(Ⅱ)在曲线上求一点,使它到直线的距离最短,并求出点的极坐标.

【答案】(1) 直线的普通方程为;(2) 点的极坐标为.

【解析】

(1)根据加减消元法得直线的普通方程,(2)由于曲线为圆,所以D为过圆心且垂直直线的直线与圆的交点(取靠近直线的点),利用解方程组可得D直角坐标,最后化为极坐标.

(Ⅰ)因为直线的参数方程为为参数,),

消去得直线的普通方程为.

(Ⅱ)因为曲线是以 为圆心,为半径的圆,

设点,且点到直线的距离最短,

所以曲线在点处的切线与直线平行.

即直线的斜率的乘积等于,即.

因为,解得.所以点 .

由于点到直线的距离最短,所以点的极坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,平面,且是边长为2的等边三角形,

(1)若是线段的中点,证明:直线

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)若直角三角形两直角边长之和为12,求其周长的最小值;

(2)若三角形有一个内角为,周长为定值,求面积的最大值;

(3)为了研究边长满足的三角形其面积是否存在最大值,现有解法如下:(其中, 三角形面积的海伦公式),

,则

但是,其中等号成立的条件是,于是矛盾,

所以,此三角形的面积不存在最大值.

以上解答是否正确?若不正确,请你给出正确的答案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点在以为焦点的双曲线上,过轴的垂线,垂足为,若四边形为菱形,则该双曲线的离心率为( )

A. B. 2 C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形中, 分别是上的点, 的中点现沿着翻折,使平面平面.

(Ⅰ)的中点,求证:平面.

(Ⅱ)求异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列各曲线的标准方程.

(1)长轴长为,离心率为,焦点在轴上的椭圆;

(2)已知双曲线的渐近线方程为,焦距为,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程](10分

在极坐标系中,圆C的极坐标方程为,若以极点O为原点,极轴为x轴的正半轴建立平面直角坐标系.

(1)求圆C的一个参数方程;

(2)在平面直角坐标系中,是圆C上的动点,试求的最大值,并求出此时点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:①对于独立性检验,的值越大,说明两事件相关程度越大,②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是,③某中学有高一学生400人,高二学生300人,高三学生200人,学校团委欲用分层抽样的方法抽取18名学生进行问卷调查,则高一学生被抽到的概率最大,④通过回归直线= +及回归系数,可以精确反映变量的取值和变化趋势,其中正确的个数是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱锥中,平面平面是边长为4,的正三角形,是顶角 的等腰三角形,点上的一动点.

(1)当时,求证:

(2)当直线与平面所成角为时,求二面角的余弦值.

查看答案和解析>>

同步练习册答案