精英家教网 > 高中数学 > 题目详情
3.sin15°sin75°=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{4}$

分析 由条件利用诱导公式、二倍角的正弦公式,求得要求式子的值.

解答 解:∵$sin15°sin75°=sin15°cos15°=\frac{1}{2}sin30°=\frac{1}{4}$,
故选:A.

点评 本题主要考查诱导公式、二倍角的正弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.在△ABC中,角A,B,C所对的边分别是a,b,c,若A=60°,B=45°,a=3$\sqrt{2}$,则b=2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若$\underset{lim}{n→∞}$$\frac{a{n}^{2}+bn-1}{4n+1}$=2,则a+b=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设i为虚数单位,则$\frac{i}{2+i}$对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C的对边分别为a,b,c,且cos2$\frac{B+C}{2}$=$\frac{1}{5}$,△ABC的面积为4.
(Ⅰ)求$\overrightarrow{AB}$•$\overrightarrow{AC}$的值;
(Ⅱ)若2sinB=5sinC,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在直角坐标系中,定义两点A(x1,y1),B(x2,y2)之间的“直角距离”为d(A,B)=|x1-x2|+|y1-y2|.
现有以下命题:
①若A,B是x轴上两点,则d(A,B)=|x1-x2|;
②已知点A(1,2),点B(cos2θ,sin2θ),则d(A,B)为定值;
③已知点A(2,1),点B在圆x2+y2=1上,则d(A,B)的取值范围是(3-$\sqrt{2}$,3+$\sqrt{2}$);
④若|AB|表示A,B两点间的距离,那么|AB|≥$\frac{\sqrt{2}}{2}$d(A,B).
其中真命题的是①②④(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设复数z1,z2在复平面内对应的点关于虚轴对称,且z1=2+i,则${z_1}•\overline{z_2}$=(  )
A.-4+3iB.4-3iC.-3-4iD.3-4i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若tanα=$\frac{1}{2}$,则sin4α-cos4α的值为(  )
A.-$\frac{1}{5}$B.-$\frac{3}{5}$C.$\frac{1}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.实数x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x+y-3≤0\\ x+3y-3≥0\end{array}\right.$,则z=x+y+1的最大值为4.

查看答案和解析>>

同步练习册答案