精英家教网 > 高中数学 > 题目详情
11.设i为虚数单位,则$\frac{i}{2+i}$对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接由复数代数形式的乘除运算化简复数$\frac{i}{2+i}$,求出复数$\frac{i}{2+i}$对应的点的坐标,在答案可求.

解答 解:由$\frac{i}{2+i}$=$\frac{i(2-i)}{(2+i)(2-i)}=\frac{1+2i}{5}=\frac{1}{5}+\frac{2}{5}i$,
则$\frac{i}{2+i}$对应的点的坐标为:($\frac{1}{5}$,$\frac{2}{5}$),位于第一象限.
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=log2(x2+ax+b)的定义域为(-∞,1)∪(3,+∞),则a=-4,b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过点F1的直线与圆x2+y2=a2切于点P,|PF2|=3|PF1|,则该双曲线的离心率为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知sin(α+$\frac{π}{3}$)=$\frac{1}{3}$,且α为三角形一内角,则cos(α+$\frac{π}{6}$)的值等于$\frac{-2\sqrt{6}+1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若向量$\overrightarrow{OA}$=(1,-1),|$\overrightarrow{OA}$=|$\overrightarrow{OB}$|,$\overrightarrow{OA}$•$\overrightarrow{OB}$=-1,则向量$\overrightarrow{OA}$与$\overrightarrow{OB}$-$\overrightarrow{OA}$夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合U={1,2,3,4,5,6},S={1,2,5},T={2,3,6},则S∩(∁UT)={1,5},集合S共有8个子集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.sin15°sin75°=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.计算tan20°-tan80°+$\sqrt{3}$tan20°•tan80°的值是-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)在R上是减函数,若a=f(log${\;}_{\frac{1}{2}}$8),b=f[($\frac{1}{2}$)${\;}^{\frac{1}{3}}$],c=f(2${\;}^{\frac{1}{2}}$).则(  )
A.a<b<cB.c<a<bC.c<b<aD.a<c<b

查看答案和解析>>

同步练习册答案