精英家教网 > 高中数学 > 题目详情

【题目】已知在直角坐标系xOy中,圆C的参数方程为 (θ为参数),直线l经过定点P(2,3),倾斜角为.

(Ⅰ)写出直线l的参数方程和圆C的标准方程;

(Ⅱ)设直线l与圆C相交于AB两点,求|PA|·|PB|的值.

【答案】(Ⅰ) 圆C方程为: ,直线的参数方程为 (t为参数);(Ⅱ)3.

【解析】试题分析:

()利用题中所给的方程可得圆C方程为: ,直线的参数方程为 (t为参数);

(Ⅱ)联立直线的参数方程与圆的普通方程,结合韦达定理可得|PA|·|PB|的值是3.

试题解析:

(Ⅰ)圆C方程为: ①,直线的参数方程为 (t为参数)②

(Ⅱ)把②代人①得, ,t1,t2是方程③的两个实根,则t1t2=-3,所以|PA|·|PB|=|t1t2|=3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校随机调查了80位学生,以研究学生中爱好羽毛球运动与性别的关系,得到下面的列联表:

爱好

不爱好

合计

20

30

50

10

20

30

合计

30

50

80

(Ⅰ)将此样本的频率估计为总体的概率,随机调查了本校的3名学生,设这3人中爱好羽毛球运动的人数为,求 的分布列,数学期望及方差;

(Ⅱ)根据表中数据,能否有充分证据判断爱好羽毛球运动与性别有关?若有,有多大把握?

0.500

0.100

0.050

0.010

0.455

2.706

3.841

6.635

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和是等差数列,且.

)求数列的通项公式;

)令.求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,四边形是菱形, 平面, , .

(1)证明:平面平面.

(2)若二面角是直二面角,求与平面所成角的正切值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示圆锥的轴截面为等腰直角△SABQ为底面圆周上一点.

(1)QB的中点为COHSC求证OH⊥平面SBQ

(2)如果∠AOQ=60°,QB=2求此圆锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】信息科技的进步和互联网商业模式的兴起,全方位地改变了大家金融消费的习惯和金融交易模式,现在银行的大部分业务都可以通过智能终端设备完成,多家银行职员人数在悄然减少.某银行现有职员320人,平均每人每年可创利20万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.2万元,但银行需付下岗职员每人每年6万元的生活费,并且该银行正常运转所需人数不得小于现有职员的,为使裁员后获得的经济效益最大,该银行应裁员多少人?此时银行所获得的最大经济效益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)讨论函数的单调性;

(2)当时,方程在区间内有唯一实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算:电费每月用电不超过100度时,按每度0.57元计算;每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.5元计算.

(Ⅰ)设月用电度时,应交电费元,写出关于的函数关系式;

(Ⅱ)小明家第一季度缴纳电费情况如下:

月份

一月

二月

三月

合计

交费金额

76元

63元

45.6元

184.6元

问小明家第一季度共用电多少度?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1是定义在R上的二次函数f(x)的部分图像,图2是函数的部分图像。

(Ⅰ) 分别求出函数的解析式;

(Ⅱ)如果函数在区间上是单调递减函数,求的取值范围。

查看答案和解析>>

同步练习册答案