【题目】已知在直角坐标系xOy中,圆C的参数方程为 (θ为参数),直线l经过定点P(2,3),倾斜角为.
(Ⅰ)写出直线l的参数方程和圆C的标准方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|PA|·|PB|的值.
科目:高中数学 来源: 题型:
【题目】某校随机调查了80位学生,以研究学生中爱好羽毛球运动与性别的关系,得到下面的列联表:
爱好 | 不爱好 | 合计 | |
男 | 20 | 30 | 50 |
女 | 10 | 20 | 30 |
合计 | 30 | 50 | 80 |
(Ⅰ)将此样本的频率估计为总体的概率,随机调查了本校的3名学生,设这3人中爱好羽毛球运动的人数为,求 的分布列,数学期望及方差;
(Ⅱ)根据表中数据,能否有充分证据判断爱好羽毛球运动与性别有关?若有,有多大把握?
0.500 | 0.100 | 0.050 | 0.010 | |
| 0.455 | 2.706 | 3.841 | 6.635 |
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,圆锥的轴截面为等腰直角△SAB,Q为底面圆周上一点.
(1)若QB的中点为C,OH⊥SC,求证:OH⊥平面SBQ;
(2)如果∠AOQ=60°,QB=2,求此圆锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】信息科技的进步和互联网商业模式的兴起,全方位地改变了大家金融消费的习惯和金融交易模式,现在银行的大部分业务都可以通过智能终端设备完成,多家银行职员人数在悄然减少.某银行现有职员320人,平均每人每年可创利20万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.2万元,但银行需付下岗职员每人每年6万元的生活费,并且该银行正常运转所需人数不得小于现有职员的,为使裁员后获得的经济效益最大,该银行应裁员多少人?此时银行所获得的最大经济效益是多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算:电费每月用电不超过100度时,按每度0.57元计算;每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.5元计算.
(Ⅰ)设月用电度时,应交电费元,写出关于的函数关系式;
(Ⅱ)小明家第一季度缴纳电费情况如下:
月份 | 一月 | 二月 | 三月 | 合计 |
交费金额 | 76元 | 63元 | 45.6元 | 184.6元 |
问小明家第一季度共用电多少度?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1是定义在R上的二次函数f(x)的部分图像,图2是函数的部分图像。
(Ⅰ) 分别求出函数和的解析式;
(Ⅱ)如果函数在区间上是单调递减函数,求的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com