分析 由条件利用同角三角函数的基本关系,求得要求式子的值.
解答 解:∵tanα=2,
∴(1)cos2α=$\frac{{cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{1}{{tan}^{2}α+1}$=$\frac{1}{4+1}$=$\frac{1}{5}$;
(2)sinαcosα=$\frac{sinαcosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{tanα}{{tan}^{2}α+1}$=$\frac{2}{4+1}$=$\frac{2}{5}$;
(3)sin2α-cos2α=$\frac{{sin}^{2}α{-cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{tan}^{2}α-1}{{tan}^{2}α+1}$=$\frac{4-1}{4+1}$=$\frac{3}{5}$;
(4)$\frac{sinα+cosα}{sinα-cosα}$=$\frac{tanα+1}{tanα-1}$=$\frac{2+1}{2-1}$=3.
点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\frac{5}{2}$ | C. | 2 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 120° | B. | 60° | C. | 150° | D. | 30° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com