精英家教网 > 高中数学 > 题目详情
正方形ABCD中,E、F分别是AB、CD的中点,沿EF将正方形折成60°的二面角,则异面直线BF与DE所成角的余弦值是
 
考点:异面直线及其所成的角
专题:计算题,作图题,空间位置关系与距离
分析:通过平行,作出异面直线BF与DE所成角,用余弦定理求解.
解答::如图,取DF,EF,EB的中点N,M,H,连接MN,MH,NH.
则MN∥ED,MH∥BF,
∠NMH是异面直线BF与DE所成角或其补角;
设正方形ABCD的边长为2,则
MN=MH=
1
2
1+22
=
5
2

NH=
22+(
1
2
)2
=
17
2

则cos∠NMH=
5
4
+
5
4
-
17
4
2•
5
2
5
2
=-
7
10

则∠NMH是异面直线BF与DE所成角α的补角;
则cosα=
7
10
点评:本题考查了学生作异面直线BF与DE所成角的能力,同时考查了余弦定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一次函数的图象经过点(0,-1),(1,1),求其解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知焦点在轴上的椭圆
x2
a2
+
y2
b2
=1(a>b>0),其长轴长为4,且点(1,
3
2
)在该椭圆上.
(1)求椭圆的标准方程;
(2)直线y=x+1与椭圆两个交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

四个形状大小完全相同的小球排成一排,其中2个为红球,2个为白球,则两个红球不相邻的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

实数x,y满足条件
x+y-4≤0
x-2y+2≥0
x≥0,y≥0
,则z=2x-y的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,Sn是其前项和,若a1=1,a2=2,anan+1an+2=an+an+1+an+2且an+1an+2≠1,则a1+a2+a3=
 
;S2011=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若锐角A,B,C满足A+B+C=π,以角A,B,C分别为内角构造一个三角形,设角A,B,C所对的边分别是a,b,c,依据正弦定理和余弦定理,得到等式:sin2A=sin2B+sin2C-2sinBsinCcosA,现已知锐角A,B,C满足A+B+C=π,则(
π
2
-
A
2
)+(
π
2
-
B
2
)+(
π
2
-
C
2
)=π,类比上述方法,可以得到的等式是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈N*,f(a+b)=f(a)•f(b),f(1)=2,则
f(2)
f(1)
+
f(3)
f(2)
+…+
f(2012)
f(2011)
+
f(2013)
f(2012)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

防疫站有A、B、C、D四名内科医生和E、F两名儿科医生,现将他们分成两个3人小组分别派往甲、乙两地指导疾病防控.两地都需要既有内科医生又有儿科医生,而且A只能去乙地.则不同的选派方案共有
 
种.

查看答案和解析>>

同步练习册答案