精英家教网 > 高中数学 > 题目详情
14.设等比数列{an}的前n项和为Sn,已知S1=16,某同学经过计算得到S2=32,S3=76,S4=130,检验后发现其中恰好一个数算错了,则算错的这个数是S2,该数列的公比是$\frac{3}{2}$.

分析 由已知可得:a1=16,a1+a2=a1(1+q)=32,a1+a2+a3=${a}_{1}(1+q+{q}^{2})$=76,a1+a2+a3+a4=${a}_{1}(1+q+{q}^{2}+{q}^{3})$=130,不妨假设第一个与第二个等式成立,解得a1=16,q=1,经过验证第四个与第三个等式都不成立,因此第一个与第二个等式必定有一个不成立.假设第一个与第三个等式成立,解得a1,q.验证即可得出.

解答 解:由已知可得:a1=16,a1+a2=a1(1+q)=32,a1+a2+a3=${a}_{1}(1+q+{q}^{2})$=76,a1+a2+a3+a4=${a}_{1}(1+q+{q}^{2}+{q}^{3})$=130,
不妨假设第一个与第二个等式成立,解得a1=16,q=1,经过验证第四个与第三个等式都不成立,因此第一个与第二个等式必定有一个不成立.
假设第一个与第三个等式成立,解得a1=16,q=$\frac{3}{2}$或-$\frac{5}{2}$.经过验证q=$\frac{3}{2}$时,第四个等式成立,因此可得:算错的这个数是S2,该数列的公比是 $\frac{3}{2}$.
故答案分别为:32(S2),$\frac{3}{2}$.

点评 本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知实数x,y满足条件$\left\{\begin{array}{l}x-y≥-1\\ x+y≤4\\ x-2y≤0\end{array}\right.$,若存在实数a使得函数z=ax+y(a<0)取到最大值z(a)的解有无数个,则a=-1,z(a)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知点O为坐标原点,椭圆C$:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,点$(\sqrt{3},\frac{1}{2})$在椭圆C上.直线l过点(1,1),且与椭圆C交于A,B两点.
(I)求椭圆C的方程;
(Ⅱ)椭圆C上是否存在一点P,使得$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OP}$?若存在,求出此时直线l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx+ax,a∈R.
(I)讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)的两个零点为x1,x2,且$\frac{x_2}{x_1}≥{e^2}$,求证:$({{x_1}-{x_2}})f'({{x_1}+{x_2}})>\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,圆O的半径为2,圆上一点P从A出发,绕着点O顺时针方向旋转一周,在旋转的过程中,记∠AOP为x(x∈[0,2π]),P在OA上的射影为M,记f(x)=$\overrightarrow{OP}$•$\overrightarrow{OM}$-1,那么函数f(x)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知AB,BC,CD为空间中不在同一平面内的三条线段,AB,BC,CD的中点分别为P,Q,R,PQ=2,QR=$\sqrt{5}$,PR=3,则AC与BD所成的角的余弦值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{5}}{3}$C.$\frac{2}{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知全集U=R,集合A={-1,1,3,5},集合B={x∈R|x≤2},则图中阴影部分表示的集合(  )
A.{-1,1}B.{3,5}C.{-1,1}D.{-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知e是自然对数的底数,实数a,b满足eb=2a-3,则|2a-b-1|的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为4,10,则输出的a为(  )
A.0B.2C.4D.6

查看答案和解析>>

同步练习册答案