精英家教网 > 高中数学 > 题目详情
已知数列{an}有a2=P(常数P>0),其前N项和为Sn,满足Sn=
n(an-a1)
2
(n∈N*
(1)求数列{an}的首项a1,并判断{an}是否为等差数列,若是求其通项公式,不是,说明理由;
( 2)令Pn=
Sn+2
Sn+1
+
Sn+1
Sn+2
,Tn是数列{Pn}的前n项和,求证:Tn-2n<3.
考点:数列的求和,数列与不等式的综合
专题:综合题,等差数列与等比数列
分析:(1)先利用an=Sn-Sn-1 (n≥2)求出数列的递推关系式(n-2)an=(n-1)an-1,再通过一步步代换求出数列的通项公式,最后看是否满足等差数列的定义即可证明结论.
(2)先对数列的通项整理得Pn=2+2(
1
n
-
1
n+2
),再利用裂项求和法求数列{Pn}的前n项和Tn,易作出判断;
解答: (1)解:由S1=a1=
a1-a1
2
=0,得a1=0,
当n≥2时,an=Sn-Sn-1=
nan
2
-
n-1
2
an-1

故(n-2)an=(n-1)an-1
故当n>2时,an=
n-1
n-2
an-1
=
n-1
n-2
n-2
n-3
4
3
3
2
2
1
•a2=(n-1)p,
由于n=2时a2=p,n=1时a1=0,也适合该式,
故对一切正整数n,an=(n-1)p,
an+1-an=p,
由于p是常数,故数列{an}为等差数列.
an=(n-1)p;
(2)证明:Sn=
n(an-a1)
2
=
n(n-1)p
2

Pn=
Sn+2
Sn+1
+
Sn+1
Sn+2
=
n+2
n
+
n
n+2
=2+2(
1
n
-
1
n+2
),
∴Tn=2n+2(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+
1
4
-
1
6
+…+
1
n-1
-
1
n+1
+
1
n
-
1
n+2

=2n+2(1+
1
2
-
1
n+1
-
1
n+2

=2n+3-2(
1
n+1
+
1
n+2
).
∴Tn=3-2(
1
n+1
+
1
n+2
)<3.
点评:本题主要考查数列的求和以及数列的递推关系式的应用和数列与不等式的综合,是对知识的综合考查,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,扇形所含的中心角是90°,弦AB将扇形分成两个部分,各以AO为轴旋转一周所得的旋转体体积V1 与V2的比是=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知∠B是△ABC的一个内角,下列函数能取负值的是(  )
A、sinB
B、cosB
C、tan
B
2
D、cos
B
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在定义域(0,2)上是增函数,且f(m+1)>f(2m-1).
(1)求m的取值范围;
(2)比较f(2m)与f(1)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2-a2x+2.
(Ⅰ)若a=1,求曲线y=f(x)在点M(1,f(1))处的切线方程;
(Ⅱ)若a>0,求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若M={x|x2-x-2>0,x∈Z},T={x|2x2+(5+2k)x+5k<0}且Ck(M∩T)=(-∞,-2)∪(-2,+∞),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

有一个小自来水厂,蓄水池中有水450吨,水厂每小时可向蓄水池中注水80吨,同时蓄水池又向居民小区供水,t小时内供水总量为80
2t
吨,现在开始向池中注水并同时向居民小区供水.若蓄水池中存水量少于150吨时,就会出现供水紧张现象,问24小时内有几个小时供水紧张?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单位向量
m
n
的夹角为60°,
(1)试判断2
n
-
m
m
的关系并证明;
(2)求
n
n
+
m
方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=
1
3
,a2+a5=4,若an=33,则n=
 

查看答案和解析>>

同步练习册答案