精英家教网 > 高中数学 > 题目详情
3.《算法统宗》是中国古代数学名著,由明代数学家程大位所著,该著作完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变,对我国民间普及珠算和数学知识起到了很大的作用.如图所示的程序框图的算法思路源于该著作中的“李白沽酒”问题,执行该程序框图,若输出的m的值为0,则输入的a的值为(  )
A.$\frac{21}{8}$B.$\frac{45}{16}$C.$\frac{93}{32}$D.$\frac{189}{64}$

分析 由已知中的程序语句,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:模拟程序的运行,可得
m=2a-3,i=1
m=2(2a-3)-3=4a-9,
满足条件i≤3,执行循环体,i=2,m=2(4a-9)-3=8a-21
满足条件i≤3,执行循环体,i=3,m=2(8a-21)-3=16a-45
满足条件i≤3,执行循环体,i=4,m=2(16a-45)-3=32a-93
此时,不满足条件i≤3,退出循环,输出m的值为0.
可得:m=32a-93=0,解得:a=$\frac{93}{32}$.
故选:C.

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.(B组题)设函数f(x)=Asin(ωx+φ)(其中A,ω,φ是常数).若函数f(x)在区间$[{-\frac{π}{4},\frac{π}{4}}]$上具有单调性,且$f(-\frac{π}{2})=f(-\frac{π}{4})=-f(\frac{π}{4})$,则f(x)的对称中心坐标为($\frac{3kπ}{4}$,0)(其中k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={1,2,3,4},B={x|x2-3<0},则A∩B=(  )
A.{1}B.{1,2}C.{1,2,3}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知:四棱锥P-ABCD的底面为直角梯形,且AB∥CD,△DAB=90°,DC=2AD=2AB,侧面PAD与底面垂直,PA=PD,点M为侧棱PC上一点D.
(1)若PA=AD,求PB与平面PAD的所成角大小;
(2)问$\frac{PA}{AD}$多大时,AM⊥平面PDB可能成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=cosxcos(x+$\frac{π}{3}$).
(1)求f(x)在区间[0,$\frac{π}{2}$]上的值域;
(2)若f(θ)=$\frac{13}{20}$,-$\frac{π}{6}$<θ<$\frac{π}{6}$,求cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.等差数列3,1,-1,-3,…,-93的项数为(  )
A.52B.51C.49D.50

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知公差为-2的等差数列{an}的前n项和为Sn,且a1=7,则使Sn<0成立的最小的自然数n的值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知正方形ABCD的对角线相交于点O,若随机向此正方形内投放一颗豆子,则它落在△AOB内的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若x∈(1,+∞),则y=x$+\frac{4}{x-1}$的最小值是5.

查看答案和解析>>

同步练习册答案