精英家教网 > 高中数学 > 题目详情
9.将下列三角函数转化为锐角三角函数,并填在题中横线上:
(1)tan$\frac{3}{5}$π=-tan$\frac{2π}{5}$;
(2)tan100°21′=-tan79°39′;
(3)tan$\frac{31}{36}$π=-tan$\frac{5π}{36}$;
(4)tan324°32′=-tan35°28′.

分析 由条件利用诱导公式化简各个题中所给式子的值,可得结果.

解答 解:(1)tan$\frac{3}{5}$π=tan(π-$\frac{2π}{5}$)=-tan$\frac{2π}{5}$,
故答案为:-tan$\frac{2π}{5}$.
(2)tan100°21′=tan(180°-79°39′)=-tan79°39′,
故答案为:-tan79°39′.
(3)tan$\frac{31}{36}$π=tan(π-$\frac{5π}{36}$)=-tan$\frac{5π}{36}$,
故答案为:-tan$\frac{5π}{36}$.
(4)tan324°32′=tan(360°-35°28′)=-tan35°28′,
故答案为:-tan35°28′.

点评 本题主要考查应用诱导公式化简三角函数式,要特别注意符号的选取,这是解题的易错点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2,N为线段PB的中点.
(1)证明:NE⊥PD;
(2)求四棱锥B-CEPD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,满足“f(x•y)=f(x)+f(y)”的单调递增函数是(  )
A.f(x)=x2B.f(x)=log2xC.f(x)=2xD.f(x)=log0.5x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过抛物线y2=2x的焦点作一条倾斜角为锐角α,长度不超过4的弦,且弦所在的直线与圆x2+y2=$\frac{3}{16}$有公共点,则角α的最大值与最小值之和是$\frac{7π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数$f(x)=2cos(\frac{1}{2}x+\frac{π}{6})$,则该函数的最小正周期为4π,值域为[-2,2],单调递增区间为[4kπ-$\frac{7π}{3}$,4kπ-$\frac{π}{3}$],k∈z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若sin($\frac{π}{6}$-α)=$\frac{3}{4}$,则cos($\frac{2π}{3}$+2α)=$\frac{1}{8}$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知C的圆心(2,0),半径为$\sqrt{3}$,圆C与抛物线D:y2=2px(p>0)的交点A、B在x轴的上方,且线段AB的中点M在直线y=x上,求:
(1)圆C的标准方程;
(2)求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若变量x,y满足约束条件$\left\{\begin{array}{l}x+y≤8\\ 2y-x≥4\\ x≥0\\ y≥0\end{array}\right.$,且z=-2x+y的最大值为m,最小值为n,则logm(-n)=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数y=2x2+5的图象上一点(1,7)及其邻近一点(1+△x,7+△y),则$\frac{△y}{△x}$=4+2△x.

查看答案和解析>>

同步练习册答案