精英家教网 > 高中数学 > 题目详情
10.函数y=log${\;}_{\frac{2}{3}}$(-x2+x+2)的值域[-2,+∞).

分析 配方得到$-{x}^{2}+x+2=-(x-\frac{1}{2})^{2}+\frac{9}{4}$,从而得出$0<-{x}^{2}+x+2≤\frac{9}{4}$,这样根据对数函数的单调性便可求出y的范围,即得出该函数的值域.

解答 解:$-{x}^{2}+x+2=-(x-\frac{1}{2})^{2}+\frac{9}{4}$;
∴$0<-{x}^{2}+x+2≤\frac{9}{4}$;
∴$lo{g}_{\frac{2}{3}}(-{x}^{2}+x+2)≥lo{g}_{\frac{2}{3}}\frac{9}{4}$=$lo{g}_{\frac{2}{3}}(\frac{2}{3})^{-2}=-2$;
∴该函数的值域为[-2,+∞).
故答案为:[-2,+∞).

点评 考查函数值域的概念及求法,配方解决二次函数问题的方法,对数函数的单调性,并熟悉对数函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知$\frac{co{t}^{2016}θ+2}{sinθ+1}$=1,那么(sinθ+2)2(cosθ+1)的值为(  )
A.9B.8C.12D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(1+x)=-x+1,则f(x)=-x+2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图(1),在△ABC中,AC=BC=1,∠ACB=90°,D是AB边上一点,沿CD将图形折叠成图(2),使得二面角B-CD-A是直二面角.

(1)若D是AB边的中点,求二面角C-AB-D的大小;
(2)若AD=2BD,求点B到平面ACD的距离;
(3)是否存在一点D,使得二面角C-AB-D是直二面角?若存在,求$\frac{BD}{AD}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,三个内角A,B,C的对边分别是a.b.c,已知B=30°,c=150,b=50$\sqrt{3}$,那么这个三角形是(  )
A.等边三角形B.等腰三角形
C.直角三角形D.等腰三角或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列函数的单调区间:
(1)f(x)=$\frac{1-x}{1+x}$;
(2)f(x)=-x2+2|x|+3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设f(x)为二次函数,且f(1)=1,f(x+1)-f(x)=-4x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知二次函数y=ax2+bx+c的图象过点P(1,2)和点Q(-2,-1).
(1)用a表示b和c;
(2)如果对任意不为零的一切实数a,这个二次函数的图象都不经过点M(m,m2+1).求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某种产品的广告费支出x与销售额 y(单位:百万元)之间有如表对应数据:
x24568
y3040506070
(Ⅰ)请画出上表数据的散点图.
(Ⅱ)请根据如表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+x,并估计广告支出1千万元时的销售额
(参考数值:2×30+4×40+5×50+6×60+8×70═1390)
参考公式.
$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{\;}}$.

查看答案和解析>>

同步练习册答案