精英家教网 > 高中数学 > 题目详情
20.已知$\frac{co{t}^{2016}θ+2}{sinθ+1}$=1,那么(sinθ+2)2(cosθ+1)的值为(  )
A.9B.8C.12D.不确定

分析 首先将已知等式变形化简得到sinθ=1+cot2014θ,利用正弦函数的有界性,得到sinθ=1,cosθ=0,可求结果.

解答 解:将$\frac{co{t}^{2016}θ+2}{sinθ+1}$=1,变形得:sinθ+1=cot2016θ+2,
整理得sinθ=1+cot2016θ≤1,
即cot2016θ≤0,
又∵cot2016θ≥0
所以cot2016θ=0,
所以cosθ=0,sinθ=1,
所以(sinθ+2)2(cosθ+1)=(1+2)2=9;
故选:A.

点评 本题考查了三角函数的化简求值,关键是由已知结合正弦函数的有界性得到sinx的值,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在△ABC中,若∠A=60°,b=16,且此三角形的面积S=220$\sqrt{3}$,则a的值是(  )
A.$\sqrt{2400}$B.25C.55D.49

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知O为坐标原点,过点P(0,2)的直线l与椭圆x2+2y2=2相交于不同的点A,B,求△OAB面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果PA、PB、PC两两垂直,那么点P在平面ABC内的投影一定是△ABC(  )
A.重心B.内心C.外心D.垂心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C的圆心在坐标原点,且过点M(1,$\sqrt{3}$).
(1)求圆C的方程;
(2)若直线l经过点M(1,$\sqrt{3}$)且与圆C相切,求直线l 的方程.
(3)已知点P是圆C上的动点,试求点P到直线x+y-4=0的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.cos70°cos335°+sin110°sin25°=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a=log54,b=log0.55,c=log45,则(  )
A.a<c<bB.b<c<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.从集合U=(a,b,c}的子集中任意选出两个不同集合A,B,要求A⊆B,那么,有19种不同的选法.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=log${\;}_{\frac{2}{3}}$(-x2+x+2)的值域[-2,+∞).

查看答案和解析>>

同步练习册答案