精英家教网 > 高中数学 > 题目详情
已知函数f(x)是定义在R上的偶函数,且对任意的实数x1≠x2(x1>0,x2>0)时,有
f(x1)-f(x2)
x1-x2
>0成立,如果实数t满足f(lnt)-f(1)≤f(1)-f(ln
1
t
),那么t的取值范围是(  )
A、(0,e]
B、[0,
1
e
]
C、[1,e]
D、[
1
e
,e]
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:先根据对数的运算性质和函数的奇偶性性化简不等式,然后利用函数是偶函数得到不等式f(lnt)≤f(1).等价为f(|lnt|)≤f(1),然后利用函数在区间[0,+∞)上单调递增即可得到不等式的解集.
解答: 解:∵函数f(x)是定义在R上的偶函数,
∴如果实数t满足f(lnt)-f(1)≤f(1)-f(ln
1
t
),
∴f(lnt)+f(ln
1
t
)=f(lnt)+f(-lnt)=f(lnt)+f(lnt)=2f(lnt),
∴不等式f(lnt)+f(ln
1
t
)≤2f(1)等价为2f(lnt)≤2f(1),
即f(lnt)≤f(1).
∵函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.
∴不等式f(lnt)≤f(1)等价为f(|lnt|)≤f(1).
即|lnt|≤1,
∴-1≤lnt≤1,
解得
1
e
≤t≤e
即实数m的取值范围是
1
e
≤t≤e,
故选:D
点评:本题主要考查函数奇偶性和单调性的应用,利用函数是偶函数的性质得到f(a)=f(|a|)是解决偶函数问题的关键.先利用对数的性质将不等式进行化简是解决本题的突破点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知非负实数x,y满足
x+y≤4
x-y≤1
,若实数k满足y+1=k(x+1),则(  )
A、k的最小值为1,k的最大值为
5
7
B、k的最小值为
1
2
,k的最大值为
5
7
C、k的最小值为
1
2
,k的最大值为5
D、k的最小值为
5
7
,k的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

某运动队拟在2015年3月份安排5次体能测试,规定:依次测试,只需有一次测试合格就不必参加后续的测试.已知运动员小刘5次测试每次合格的概率依次构成一个公差为
1
9
的等差数列,他第一次测试合格的概率不超过
4
9
,且他直到第二次测试才合格的概率为
8
27

(Ⅰ)求小刘第一次参加测试就合格的概率;
(Ⅱ)在小刘参加第一、第二次测试均不合格的前提下,记小刘参加后续测试的次数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行右边的程序框图,则输出的A是(  )
A、
29
12
B、
70
29
C、
29
70
D、
169
70

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足
y≥x
x+y≤2
x≥a
,且目标函数z=2x+y的最小值为1,则实数a的值是(  )
A、1
B、
1
3
C、
1
4
D、
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

如图展示了一个由区间(0,1)到实数集R的映射过程;区间(0,1)中的实数m对应数轴上的点M,如图①;将线段AB围成一个圆,使两端点A、B恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),如图③.图③中直线AM与x轴交于点N(n,0),则m的象就是n,记作f(m)=n.
(1)方程f(x)=0的解是
 

(2)下列说法中正确命题的序号是
 
.(填出所有正确命题的序号)
①f(
1
4
)=1;②f(x)是奇函数;③f(x)在定义域上单调递增;④f(x)的图象关于点(
1
2
,0)对称;⑤f(x)>
3
的解集是(
2
3
,1).

查看答案和解析>>

科目:高中数学 来源: 题型:

在等腰三角形ABC中,AB=AC,且D为AC中点,BD=
3
,则△ABC的面积最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
lg(1-2x)
的定义域为(  )
A、(-∞,0]
B、(-∞,0)
C、(0,
1
2
D、(-∞,
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
x
,g(x)=ax+b,若直线g(x)=ax+b是函数f(x)=lnx-
1
x
图象的切线,求a+b的最小值.

查看答案和解析>>

同步练习册答案