精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=ex-a+lnx.
(Ⅰ)若a=1,求证:当x>1时,f(x)>2x-1;
(Ⅱ)若存在x0≥e,使f(x0)<2lnx0,求实数a的取值范围.

分析 (Ⅰ)a=1时,化简求出导数,设$g(x)={e^{x-1}}+lnx-2x+1,g'(x)={e^{x-1}}+\frac{1}{x}-2$,然后求解二次导数,求出导函数的最值,然后证明结论.
(Ⅱ)若存在x0≥e,使f(x0)<2lnx0,即${e^{{x_0}-a}}<ln{x_0}$,即存在x0≥e,使${e^a}>\frac{{{e^{x_0}}}}{{ln{x_0}}}$.设$h(x)=\frac{e^x}{lnx}$(x≥e),求出导函数,设$u=lnx-\frac{1}{x},u'=\frac{1}{x}+\frac{1}{x^2}>0$,通过函数的单调性求解函数的最值,推出结果.

解答 解:(Ⅰ)证明:a=1时,$f(x)={e^{x-1}}+lnx,f'(x)={e^{x-1}}+\frac{1}{x}$,
设$g(x)={e^{x-1}}+lnx-2x+1,g'(x)={e^{x-1}}+\frac{1}{x}-2$$g''(x)={e^{x-1}}-\frac{1}{x^2},x>1,{e^{x-1}}>1,0<\frac{1}{x^2}<1,g''(x)={e^{x-1}}-\frac{1}{x^2}>0$,g'(x)在(1,+∞)递增,又g'(1)=0,∴x>1时g'(x)>0,g(x)在(1,+∞)递增,
x>1时,g(x)>g(1)=0,即ex+lnx-2x+1>0,
x>1时,ex+lnx>2x-1,即f(x)>2x-1….(6分)
(2)若存在x0≥e,使f(x0)<2lnx0,即${e^{{x_0}-a}}<ln{x_0}$
即存在x0≥e,使${e^a}>\frac{{{e^{x_0}}}}{{ln{x_0}}}$.
设$h(x)=\frac{e^x}{lnx}$(x≥e),则$h'(x)=\frac{e^x}{{{{ln}^2}x}}(lnx-\frac{1}{x})$,
设$u=lnx-\frac{1}{x},u'=\frac{1}{x}+\frac{1}{x^2}>0$,$u=lnx-\frac{1}{x}$在[e,+∞)递增,
$x=e时,u=1-\frac{1}{e}>0$,所以u>0在[e,+∞)恒成立,h'(x)>0在[e,+∞)恒成立,
所以h(x)在[e,+∞)递增,所以x≥e时,$h{(x)_{min}}=h(e)={e^e}$,
需ea>ee⇒a>e….(12分)

点评 本题考查函数的导数的综合应用,函数的最值以及导函数的导数的求法与应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=sinx+cosx,g(x)=2cosx,动直线x=t与f(x)和g(x)的图象分别交于A、B两点,则|AB|的取值范围是(  )
A.[0,1]B.[0,$\sqrt{2}$]C.[0,2]D.[1,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.数列{an}满足an+5an+1=36n+18,n∈N*,且a1=4.
(1)写出{an}的前3项,并猜想其通项公式;
(2)用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若定义在(0,1)上的函数f(x)满足:f(x)>0且对任意的x∈(0,1),有f($\frac{2x}{1+{x}^{2}}$)=2f(x).则(  )
A.对任意的正数M,存在x∈(0,1),使f(x)≥M
B.存在正数M,对任意的x∈(0,1),使f(x)≤M
C.对任意的x1,x2∈(0,1)且x1<x2,有f(x1)<f(x2
D.对任意的x1,x2∈(0,1)且x1<x2,有f(x1)>f(x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.A={x|y=lg(x-1)},$B=\left\{{y\left|{y=\sqrt{4-{x^2}}}\right.}\right\}$,则A∩B=(  )
A.[0,2]B.(1,2]C.[1,2)D.(1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若a和b是计算机在区间(0,3)上产生的随机数,那么函数f(x)=lg(ax2+4x+4b) 的值域为R的概率为$\frac{1+2ln3}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表(单位:辆):
轿车A轿车B轿车C
舒适型100150z
标准型300450600
按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(Ⅰ)求z的值;
(Ⅱ)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(Ⅲ)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分x的值如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数xi(1≤i≤8,i∈N),设样本平均数为$\overline{x}$,求|xi-$\overline{x}$|≤0.5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在等差数列{an}中,前n项和为Sn,且S2011=-2011,a1012=3,则S2017等于(  )
A.1009B.-2017C.2017D.-1009

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在数字1、2、3、4中随机选两个数字,则选中的数字中至少有一个是偶数的概率为(  )
A.$\frac{11}{12}$B.$\frac{3}{4}$C.$\frac{5}{6}$D.$\frac{5}{8}$

查看答案和解析>>

同步练习册答案