精英家教网 > 高中数学 > 题目详情
6.已知数列$\sqrt{2},\sqrt{5},2\sqrt{2},\sqrt{11}$,…则$2\sqrt{17}$是它的第(  )项.
A.21B.22C.23D.24

分析 通过数列的每一项,得到数列的取值规律,得到数列的通项公式即可.

解答 解:2,5,8,11…是公差为3的等差数列通项公式为:2+3(n-1)=3n-1,
数列$\sqrt{2},\sqrt{5},2\sqrt{2},\sqrt{11}$,…即$\sqrt{2}$,$\sqrt{5}$,$\sqrt{8}$,$\sqrt{11}$,…的通项公式为an=$\sqrt{3n-1}$,
∴$\sqrt{3n-1}$=$2\sqrt{17}$,
解得n=23,
故选:C

点评 本题主要考查数列的概念及简单的表示,利用数列项的规律得到通项公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知A(4,0),B(2,2)为椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1内的点,M是椭圆上的动点,则|MA|+|MB|的最小值是(  )
A.10+2$\sqrt{10}$B.10+$\sqrt{10}$C.10-2$\sqrt{10}$D.10-$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.sin315°的值为(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设0<α<$\frac{π}{2}$,0<β<$\frac{π}{2}$,且sinα=$\frac{1}{3}$,cosβ=$\frac{\sqrt{3}}{2}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,L的参数方程$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),C的参数方程为$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数).
(1)求L和C的普通方程;
(2)已知P(0,1),L与C交于A、B两点,求|PA||PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.我国古代有一个“百钱买百鸡”问题:用100元买100只鸡,其中公鸡每只5元,母鸡每只3元,小鸡3只一元,问能买多少只公鸡?多少只母鸡?多少只小鸡?现在,设公鸡、母鸡的单价不变,小鸡每只0.5元,请你输入钱数和鸡的总数.计算出买公鸡、母鸡、小鸡各多少只.
要求:(1)画出程序框图,或者用你熟悉的一种程序语言编写程序;
(2)如果有自然数解,请输出所有可能的结果:如果没有自然数解,请输出提示信息.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\frac{1}{2}{x^2}$-2lnx的单调递减区间是(0,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设a为实数,f(x)=lnx-ax
(I)当a=1时,求函数f(x)的单调区间;
(II)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=log${\;}_{\frac{1}{2}}$(2-ax)在[0,3]上的增函数,则a的取值范围是(0,$\frac{2}{3}$).

查看答案和解析>>

同步练习册答案