精英家教网 > 高中数学 > 题目详情
15.双曲线C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>0,b>0)$的离心率为$\frac{5}{4}$,焦点到渐近线的距离为3,则C的实轴长等于8.

分析 根据双曲线的离心率结合焦点到渐近线的距离建立方程关系求出a的值即可.

解答 解:∵双曲线的渐近方程为y=±$\frac{b}{a}$x,
设一个焦点坐标为F(c,0),一个渐近线方程为bx-ay=0,
则焦点到渐近线的距离为3,
即d=$\frac{|bc|}{\sqrt{{b}^{2}+{a}^{2}}}=\frac{bc}{c}$=b=3,
∵双曲线C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>0,b>0)$的离心率为$\frac{5}{4}$,
∴e=$\frac{c}{a}$=$\frac{5}{4}$,即c=$\frac{5}{4}$a,
则c2=$\frac{25}{16}$a2=a2+9,
即$\frac{9}{16}$a2=9,
则a2=16,
即a=4,
则C的实轴长等于2a=8,
故答案为:8.

点评 本题主要考查双曲线的方程和性质,根据条件建立方程关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知△ABC中,AB=8,BC=10,AC=6,P点在平面ABC内,且$\overrightarrow{PB}$•$\overrightarrow{PC}$=-9,则|$\overrightarrow{PA}$|的取值范围为[1,4+$\sqrt{7}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在等差数列{an}中,Sn=5n2+3n,求an=10n-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的渐近线是y=±$\frac{4}{3}$x,则该双曲线的离心率$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知双曲线 $C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点为F,双曲线C与过原点的直线相交于A、B两点,连接AF,BF.若|AF|=6,|BF|=8,$cos∠BAF=\frac{3}{5}$,则该双曲线的离心率为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知F1、F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左右焦点,以线段F1F2为直径的圆与双曲线的渐近线的一个交点为P,且P在第一象限内,若|PF2|=2$\sqrt{3}$a,则双曲线的离心率为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一个实轴端点与恰与抛物线y2=-4x的焦点重合,且双曲线的离心率等于2,则该双曲线的方程为(  )
A.$\frac{x^2}{4}-\frac{y^2}{12}=1$B.$\frac{x^2}{12}-\frac{y^2}{4}=1$C.$\frac{x^2}{3}-\frac{y^2}{1}=1$D.${x^2}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{\sqrt{13}}{3}$,右焦点F,F在渐近线上的垂足为M,O为坐标原点,若$\overrightarrow{OF}$•$\overrightarrow{MF}$=4,则双曲线C的方程是$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{4}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f是从集合A={1,2}到集合B={0,1,2,3,4}的映射,则满足f(1)+f(2)=4的所有映射的个数为5个.

查看答案和解析>>

同步练习册答案