精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
4
x2+ax+
a
2

(1)当a=1时,解不等式f(x)≥
7
4

(2)若函数f(x)在(-∞,-4)上是减函数,求实数a的取值范围;
(3)当|x|≤2,记函数f(x)的最小值为g(a),求出g(a)的解析式,并求出关于a的方程g(a)=a2-
3a
2
+2m-1在(-1,1)上有两个不等的实数根时,实数m的取值范围.
考点:二次函数的性质
专题:计算题,函数的性质及应用
分析:(1)当a=1时,不等式f(x)≥
7
4
可化为
1
4
x2+x+
1
2
7
4
,从而解得;
(2)由函数f(x)在(-∞,-4)上是减函数可知对称轴在-4的右侧,从而解得;
(3)讨论对称轴的位置,从而求f(x)的最小值为g(a),g(x)=
5
2
a+1,a≤-1
-a2+
a
2
,-1<a<1
-
3
2
a+1,a≥1
方程g(a)=a2-
3a
2
+2m-1可化为-a2+
a
2
=a2-
3a
2
+2m-1,即m=-a2+a+
1
2
=-(a-
1
2
2+
3
4
,从而求实数m的取值范围.
解答: 解:(1)当a=1时,不等式f(x)≥
7
4
可化为
1
4
x2+x+
1
2
7
4

解得,x≥1或x≤-5;
(2)∵函数f(x)在(-∞,-4)上是减函数,
∴-
a
1
4
≥-4,
解得,a≤2;
(3)①当-
a
1
4
≤-2,即a≥1时,
f(x)在[-2,2]上单调递增,
故g(a)=f(-2)=1-2a+
a
2
=-
3
2
a
+1;
②当-
a
1
4
≥2,即a≤-1时,
f(x)在[-2,2]上单调递减,
故g(a)=f(2)=1+2a+
a
2
=
5
2
a+1;
③当-2<-
a
1
4
<2,即-1<a<1时,
g(a)=f(-2a)=-a2+
a
2

故g(x)=
5
2
a+1,a≤-1
-a2+
a
2
,-1<a<1
-
3
2
a+1,a≥1

方程g(a)=a2-
3a
2
+2m-1可化为
-a2+
a
2
=a2-
3a
2
+2m-1,
即m=-a2+a+
1
2
=-(a-
1
2
2+
3
4

∵-1<a<1,
∴-
3
2
<m≤
3
4
点评:本题考查了二次函数与二次方程及分段函数的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在边长为2的正方体ABCD-A1B1C1D1中,E,F,G,H分别为CC1,C1D1,D1D,CD的中点,N是BC的中点,M在四边形EFGH上以及其内部运动,若MN∥平面A1BD,则M的轨迹的长度是(  )
A、
2
B、2
C、π
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①已知a,b都是正数,且
a+1
b+1
a
b
,则a<b;
②当x∈(1,+∞)时,函数y=x3,y=x
1
2
的图象都在y=x的上方;
③命题“?x∈R,使得x2-2x+1<0”的否定是真命题;
④把y=3sin(2x+
π
3
)
的图象向右平移
π
3
得y=3sin2x图象;
⑤“x≤1,且y≤1”是“x+y≤2”的充要条件.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},圆C1:x2+y2-2anx+2an+1y-1=0和圆C2:x2+y2+2x+2y-2=0.若圆C1与C2交于A、B两点,且AB平分圆C2的周长.
(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)若a1=-3,求圆C1被直线x+2y+2=0截得弦长最小时圆C1的方程.
(Ⅲ)若圆C3为(Ⅱ)中求出的圆C1的同心圆,且半径为2.设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C2和C3相交,且直线l1被圆C2截得的弦长与直线l2被圆C3截得的弦长相等,试求所有满足条件的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga
x-1
x+1
(a>0,a≠1).
(1)求函数f(x)的定义域;
(2)讨论f(x)在(1,+∞)上的单调性,并用定义证明;
(3)令g(x)=1+logax,当[m,n]?(1,+∞)(m<n)时,f(x)在[m,n]上的值域是[g(n),g(m)],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若S是等差数列的奇数项的和,S是等差数列的偶数项的和,Sn是等差数列的前n项的和,则有如下性质:
(1)当n为偶数时,则S-S=
 
(其中d为公差);
(2)当n为奇数时,则S-S=
 
,S=
 
,S=
 
S
S
=
 
Sn
S-S
=
S+S
S-S
=
 
(其中a是等差数列的中间一项).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,
AB
=
a
AC
=
b
,当
a
b
满足下列条件式,能确定△ABC的形状吗?
(1)
a
b
<0;
(2)
a
b
=0;
(3)
a
b
>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,-1),
b
=(-1,2),
p
=k
a
+
b
q
=
a
-k
b
,若
p
q
,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥A-BCD中,AB=AC=BD=CD=2,BC=2AD=2
2
,则直线AD与底面BCD所成角为
 

查看答案和解析>>

同步练习册答案