精英家教网 > 高中数学 > 题目详情
10.已知z=1+i
(1)设w=z2+3$\overline{z}$-4,求|w+i|;
(2)如果$\frac{{z}^{2}+az+b}{{z}^{2}-z+1}$=1-i,求实数a,b的值.

分析 (1)利用复数的运算法则、模的计算公式即可得出;
(2)利用复数定义是法则、复数相等即可得出.

解答 解:(1)w=(1+i)2+3(1-i)-4=2i+3-3i-4=-1-i,
∴w+i=-1,
∴|w+i|=1;
(2)∵$\frac{{z}^{2}+az+b}{{z}^{2}-z+1}$=1-i,∴2i+a(1+i)+b=(2i-1-i+1)(1-i),化为(a+b)+(2+a)i=1+i,
∴$\left\{\begin{array}{l}{a+b=1}\\{2+a=1}\end{array}\right.$,
解得a=-1,b=2.

点评 本题考查了复数的运算法则、模的计算公式、复数相等,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.将编号为1、2、3、4的四本不同的书放入编号为1、2、3、4的4个抽屉里,要求每个抽屉只能放一本,并且书号和抽屉号全不相同,问有几种情况?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求函数y=($\frac{1}{2}$)${\;}^{{x}^{2}-2x}$的单调区间和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数y=lg(ax+1)定义域为R,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若点(sinα,sin2α)位于第四象限,则角α在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知在△ABC中,角A、B、C所对的边分别为a、b、c,已知cosC+(cosA-sinA)cosB=0.
(1)求∠B的大小;
(2)若a+c=1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某商朗朗上口门前有8个停车位,现有4辆轿车和3辆小货车要停靠在该门前,若轿车不相邻,小货车不相邻(中间隔空车位也算不相邻),则不同的停放方法的种数为1152.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.数列{an}满足a1=3,an+1=$\frac{{a}_{n}-1}{{a}_{n}}$,则a2015=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的右焦点为F,上顶点为B,若线段BF的垂直平分线经过坐标原点O.
(Ⅰ)求此椭圆的离心率;
(Ⅱ)过坐标原点引两条相互垂直的直线OM,ON(与坐标轴不重合)分别交椭圆于M,N两点,若三角形OMN的最小面积为$\sqrt{2}$,求椭圆方程.

查看答案和解析>>

同步练习册答案