【题目】已知函数, .
(Ⅰ)求的最大值;
(Ⅱ)若,判断的单调性;
(Ⅲ)若有两个零点,求的取值范围.
【答案】(Ⅰ)最大值f(e)=;(Ⅱ)见解析;(III).
【解析】试题分析:
(Ⅰ)求解导函数有f′(x)=(x>0),由导函数研究函数的单调性可得当x=e时,f(x)取得最大值f(e)=.
(Ⅱ)a=1, ,令,则, ,则. 在x>0时单调递减.
(III)令 ,原问题等价于h(x)有两个零点, ,
结合(Ⅰ)的结论可得.
试题解析:
(Ⅰ)f′(x)=(x>0),
当x∈(0,e)时,f′(x)>0,f(x)单调递增;
当x∈(e,+∞)时,f′(x)<0,f(x)单调递减,
所以当x=e时,f(x)取得最大值f(e)=.
(Ⅱ)a=1, ,令,
,当,
当, ,即,
.故在x>0时单调递减.
(III) g(x)有两个零点等价于h(x)有两个零点,
由(1)知,
由图像可知.
科目:高中数学 来源: 题型:
【题目】已知圆,圆,动圆与圆内切并且与圆外切,圆心的轨迹为曲线.
(Ⅰ)求的方程;
(Ⅱ)已知曲线与轴交于两点,过动点的直线与交于 (不垂直轴),过作直线交于点且交轴于点,若构成以为顶点的等腰三角形,证明:直线, 的斜率之积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:
(Ⅰ)试估计平均收益率;
(Ⅱ)根据经验,若每份保单的保费在20元的基础上每增加元,对应的销量(万份)与(元)有较强线性相关关系,从历史销售记录中抽样得到如下5组与的对应数据:
据此计算出的回归方程为.
(i)求参数的估计值;
(ii)若把回归方程当作与的线性关系,用(Ⅰ)中求出的平均收益率估计此产品的收益率,每份保单的保费定为多少元时此产品可获得最大收益,并求出该最大收益.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—5:不等式选讲
已知函数(x)=|2x-a|+ |x -1|.
(Ⅰ)当a=3时,求不等式(x)≥2的解集;
(Ⅱ)若(x)≥5-x对恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面结论正确的是( )
①“所有2的倍数都是4的倍数,某数是2的倍数,则一定是4的倍数”,这是三段论推理,但其结论是错误的.
②在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.
③由平面三角形的性质推测空间四面体的性质,这是一种合情推理.
④一个数列的前三项是1,2,3,那么这个数列的通项公式必为.
A. ①③ B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一牧羊人赶着一群羊通过4个关口,每过一个关口,守关人将拿走当时羊的一半,然后退还一只给牧羊人,过完这些关口后,牧羊人只剩下3只羊,则牧羊人在过第1个关口前有_________只羊.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com