精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

(Ⅰ)求的最大值;

(Ⅱ)若,判断的单调性;

(Ⅲ)若有两个零点,求的取值范围.

【答案】(Ⅰ)最大值f(e)=;(Ⅱ)见解析;(III).

【解析】试题分析:

求解导函数有f′(x)x0),由导函数研究函数的单调性可得当xe时,f(x)取得最大值f(e)

a=1, , ,. x>0时单调递减.

III ,原问题等价于hx)有两个零点,

结合()的结论可得.

试题解析:

f′(x)x0),

x(0e)时,f′(x)0f(x)单调递增;

x(e,+∞)时,f′(x)0f(x)单调递减,

所以当xe时,f(x)取得最大值f(e)

a=1, ,

,当

,

.x>0时单调递减.

III g(x)有两个零点等价于hx)有两个零点,

由(1)知

图像可知.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为的正方形,侧棱底面,且侧棱的长是,点分别是的中点.

(Ⅰ)证明: 平面

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,动圆与圆内切并且与圆外切,圆心的轨迹为曲线.

(Ⅰ)求的方程;

(Ⅱ)已知曲线轴交于两点,过动点的直线与交于 (不垂直轴),过作直线交于点且交轴于点,若构成以为顶点的等腰三角形,证明:直线 的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:

(Ⅰ)试估计平均收益率;

(Ⅱ)根据经验,若每份保单的保费在20元的基础上每增加元,对应的销量(万份)与(元)有较强线性相关关系,从历史销售记录中抽样得到如下5组的对应数据:

据此计算出的回归方程为.

(i)求参数的估计值;

(ii)若把回归方程当作的线性关系,用(Ⅰ)中求出的平均收益率估计此产品的收益率,每份保单的保费定为多少元时此产品可获得最大收益,并求出该最大收益.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—5:不等式选讲

已知函数(x)=|2x-a|+ |x -1|.

(Ⅰ)当a=3时,求不等式(x)≥2的解集;

(Ⅱ)若(x)≥5-x对恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面结论正确的是( )

①“所有2的倍数都是4的倍数,某数是2的倍数,则一定是4的倍数”,这是三段论推理,但其结论是错误的.

②在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.

③由平面三角形的性质推测空间四面体的性质,这是一种合情推理.

④一个数列的前三项是1,2,3,那么这个数列的通项公式必为.

A. ①③ B. ②③ C. ③④ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线yx+ln x在点(1,1)处的切线与曲线yax2+(a+2)x+1相切,则a________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题恒成立;命题方程表示双曲线.

(1)若命题为真命题,求实数的取值范围;

(2)若命题“”为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一牧羊人赶着一群羊通过4个关口,每过一个关口,守关人将拿走当时羊的一半,然后退还一只给牧羊人,过完这些关口后,牧羊人只剩下3只羊,则牧羊人在过第1个关口前有_________只羊.

查看答案和解析>>

同步练习册答案