分析 解方程fm(x)=fn(x)得交点P($\frac{m+n-1}{2}$,$(\frac{n-m-1}{2})^{2}-m$),函数f(x)的图象与直线l:y=-x+n-m有四个不同的交点,由图象知,点P在l的上方,故$\frac{m+n-1}{2}+(\frac{n-m-1}{2})^{2}-m-(n-m)$>0,由此解得m-n的取值范围.
解答 解:作函数f(x)的图象,解方程fm(x)=fn(x),![]()
得x=$\frac{m+n-1}{2}$,即交点P($\frac{m+n-1}{2}$,$(\frac{n-m-1}{2})^{2}-m$),
又函数y=f(x)+x+m-n有四个零点,
即函数f(x)的图象与直线l:y=-x+n-m有四个不同的交点.
由图象知,点P在l的上方,
∴$\frac{m+n-1}{2}+(\frac{n-m-1}{2})^{2}-m-(n-m)$>0,
即(n-m)2-4(n-m)-1>0,
解得:n-m$<2-\sqrt{5}$或n-m$>2+\sqrt{5}$.
∵m<n,∴n-m>$2+\sqrt{5}$,
即m-n<-($2+\sqrt{5}$).
故答案为:(-∞,-2-$\sqrt{5}$).
点评 本题主要考查根的存在性以及根的个数判断,函数的零点与方程的根的关系,体现了转化的数学思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | y平均减少2.5个单位 | B. | y平均减少0.5个单位 | ||
| C. | y平均增加2.5个单位 | D. | y平均增加0.5个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 一个命题的逆命题为真,则它的逆否命题一定为真 | |
| B. | 若“ac2>bc2”,则a>b | |
| C. | ?x0∈R,$sin{x_0}+cos{x_0}=\frac{3}{2}$ | |
| D. | “a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0” |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 0 | C. | -i | D. | i |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 15 | B. | 30 | C. | 45 | D. | 60 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $CD,CE,\frac{2ab}{a+b}≥\sqrt{ab}$ | B. | $CD,DE,\frac{2ab}{a+b}≤\sqrt{ab}$ | C. | $CD,CE,\frac{2ab}{a+b}≥\sqrt{ab}$ | D. | $CD,CE,\frac{2ab}{a+b}≤\sqrt{ab}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com