精英家教网 > 高中数学 > 题目详情
4.公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n值为(  )
参考数据:$\sqrt{3}=1.732$,sin15°≈0.2588,sin7.5°≈0.1305.
A.12B.24C.48D.96

分析 列出循环过程中S与n的数值,满足判断框的条件即可结束循环.

解答 解:模拟执行程序,可得:
n=6,S=3sin60°=$\frac{3\sqrt{3}}{2}$,
不满足条件S≥3.10,n=12,S=6×sin30°=3,
不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,
满足条件S≥3.10,退出循环,输出n的值为24.
故选:B.

点评 本题考查循环框图的应用,考查了计算能力,注意判断框的条件的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,三棱柱ABC-A1B1C1中,AC=AA1=2,AB=BC=2$\sqrt{2}$,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C相交于点D.
(1)求证:BC1⊥平面AA1C1C;
(2)求二面角C1-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知如图:三棱柱ABC-A1B1C1的各条棱均相等,AA1⊥平面ABC,E为AA1的中点.
(1)求证:平面BC1E⊥平面BCC1B1
(2)求二面角C1-BE-A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某班主任准备请2016届毕业生做报告,要从甲、乙等8人中选4人发言,要求甲、乙两人至少一人参加,若甲乙同时参加,则他们发言中间需恰隔一人,那么不同的发言顺序共有1080种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=\frac{1}{2}{x^2}+(1-a)x-alnx\;,\;a∈R$.
(1)若f(x)存在极值点为1,求a的值;
(2)若f(x)存在两个不同零点x1,x2,求证:$a>\frac{e}{2}$(e为自然对数的底数,ln2≈0.6931).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.有一个游戏,将标有数字1、2、3、4的四张卡片分别随机发给甲、乙、丙、丁4个人,每人一张,并请这4人在看自己的卡片之前进行预测:甲说:乙或丙拿到标有3的卡片;乙说:甲或丙拿到标有2的卡片;丙说:标有1的卡片在甲手中;丁说:甲拿到标有3的卡片.结果显示:这4人的预测都不正确,那么甲、乙、丙、丁4个人拿到的卡片上的数字依次为4、2、1、3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知α为第四象限角,sinα+cosα=$\frac{1}{5}$,则tanα的值为-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}满足${a_{n+1}}=\sqrt{{a_n}^2-2{a_n}+2}+1(n∈{N_+})$,则使不等式a2016>2017成立的所有正整数a1的集合为(  )
A.{a1|a1≥2017,a1∈N+}B.{a1|a1≥2016,a1∈N+}C.{a1|a1≥2015,a1∈N+}D.{a1|a1≥2014,a1∈N+}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知直线l1:x+2y-1=0与直线l2:mx-y=0垂直,则m=(  )
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

同步练习册答案