精英家教网 > 高中数学 > 题目详情
8.2017年将进行高考改革,语文学科要加强对中华民族优秀传统文化的考查,充分体现语文的基础性和作为母语学科的重要地位,一时间“语文分值将会提高到180分”引起广泛关注,为了解在校大学生及社会人士(包括老师、家长等)的看法,某媒体在全省选择了3600人进行调查,就是否“提高语文分值”的问题,调查统计的结果如表:
态度
调查人群
应该取消不应该提高无所谓
在校学生2100人120人y人
社会人士600人x人z人
媒体在全体样品中用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,其中持“无所谓”态度的人中抽取了72人.
(1)求应在持“不应该提高”态度的人中抽取多少人?
(2)在持“不应该提高”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.

分析 (1)先求出持“无所谓”态度的人数,由此能求出x,从而能求出持“不应该提高”态度的人数,进而由分层抽样的性质能求出应在持“不应该提高”态度的人中抽取的人数.
(2)在持“不应该提高”态度的人中,用分层抽样的方法抽取6人,在所抽取的6人中,在校学生人数为4人,社会人士为2人,第一组中在校学生人数ξ的可能取值为1,2,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ.

解答 解:(1)∵在全体样品中用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,其中持“无所谓”态度的人中抽取了72人,
∴持“无所谓”态度的人数为$\frac{3600}{360}×72$=720,
∴x=3600-2100-120-720=60,
∴持“不应该提高”态度的人数为:120+60=180人,
由分层抽样的性质得应在持“不应该提高”态度的人中抽取:180×$\frac{360}{3600}$=18人.
(2)在持“不应该提高”态度的人中,用分层抽样的方法抽取6人,
∴在所抽取的6人中,在校学生人数为$\frac{120}{180}×6=4$人,社会人士为:$\frac{60}{180}×6=2$人,
第一组中在校学生人数ξ的可能取值为1,2,3,
P(ξ=1)=$\frac{{C}_{4}^{1}{C}_{2}^{2}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
P(ξ=2)=$\frac{{C}_{4}^{2}{C}_{2}^{1}}{{C}_{6}^{3}}$=$\frac{3}{5}$,
P(ξ=3)=$\frac{{C}_{4}^{3}{C}_{2}^{0}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
∴ξ的分布列为:

 ξ 1 2 3
 P $\frac{1}{5}$ $\frac{3}{5}$ $\frac{1}{5}$
Eξ=1$\frac{1}{5}+2×\frac{3}{5}+3×\frac{1}{5}$=2.

点评 本题考查分层抽样的应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若不等式组$\left\{\begin{array}{l}x+y-2≤0\\ x+2y-2≥0\\ x-y+2m≥0\end{array}\right.$表示的平面区域为三角形,且其面积等于$\frac{4}{3}$,则m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.40名高三学生某次数学考试成绩(单位:分)的频率分布直方图如图:
(Ⅰ)求频率分布直方图中x的值;
(Ⅱ)分别求出成绩落在(130,140]与(140,150]中的学生人数;
(Ⅲ)从成绩落在(130,150]中的学生中任选2人,求此2人中至少有1人的成绩落在(140,150]中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.正三角形ABC边长为2,M、N分别为边AB、AC的中点,点P为线段MN上的动点,则$\overrightarrow{BP}•\overrightarrow{CP}$的取值范围是[$-\frac{1}{4}$,0];若$\overrightarrow{BP}=x\overrightarrow{AB}+y\overrightarrow{AC}$,则(x+1)•y的最大值为$\frac{7}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|x+1>0},B={x|x2-2≤0},则A∩B=(  )
A.{x|x$≥-\sqrt{2}$}B.{x|-$\sqrt{2}$≤x≤-1}C.{x|-$\sqrt{2}≤x≤\sqrt{2}$}D.{x|-1$≤x≤\sqrt{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=x2+ax+3.
(1)当x∈R时,f(x)≥a恒成立,求a的取值范围;
(2)当x∈[-2,2]时,f(x)≥a恒成立,求a的取值范囤;
(3)设不等式f(x)≥a对于满足1≤a≤3的一切a的取值都成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设$a=\sqrt{{x^2}-xy+{y^2}},b=p\sqrt{xy},c=x+y$,若对任意的正实数x,y,都存在以a,b,c为三边长的三角形,则实数p的取值范围是(  )
A.(1,3)B.(1,2]C.$(\frac{1}{2},\frac{7}{2})$D.以上均不正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂.现随机抽取这两种产品各60件进行检测,检测结果统计如表:
得分[60,70)[70,80)[80,90)[90,100]
5103411
812319
(Ⅰ)试分别估计产品甲,乙下生产线时为合格品的概率;
(Ⅱ)生产一件产品甲,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件产品乙,若是合格品可盈利90元,若是不合格品则亏损15元.在(Ⅰ)的前提下:
(1)记X为生产1件甲和1件乙所得的总利润,求随机变量X的分布列和数学期望;
(2)求生产5件乙所获得的利润不少于300元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=2sinxcosx+2cos2x+3,则函数f(x)的最大值是(  )
A.4+$\sqrt{2}$B.4-$\sqrt{2}$C.4D.5

查看答案和解析>>

同步练习册答案