精英家教网 > 高中数学 > 题目详情
18.已知Sn为正项等比数列{an}的前n项和,且S2=4,S3=13.
(1)求数列{an}的通项公式;
(2)设Tn为数列{2n-1}的前n项和,比较2S10与T243的大小
(3)设bn=$\frac{{a}_{n+1}-{a}_{n}}{({a}_{n}+1)({a}_{n+1}+1)}$,求证:b1+b2+…+bn$<\frac{1}{2}$.

分析 (1)设正项等比数列{an}的公比为q>0,由S2=4,S3=13.可得a3=S3-S2=9,S2=$\frac{9}{{q}^{2}}$+$\frac{9}{q}$=4,解得q.即可得出.
(2)Tn=n2.由(1)可得:Sn=$\frac{{3}^{n}-1}{2}$.即可比较出2S10与T243的大小关系.
(3)bn=$\frac{{a}_{n+1}-{a}_{n}}{({a}_{n}+1)({a}_{n+1}+1)}$=$\frac{{3}^{n}-{3}^{n-1}}{({3}^{n-1}+1)({3}^{n}+1)}$=$\frac{1}{{3}^{n-1}+1}$-$\frac{1}{{3}^{n}+1}$,利用裂项求和方法与数列的单调性即可证明.

解答 (1)解:设正项等比数列{an}的公比为q>0,∵S2=4,S3=13.
∴a3=S3-S2=13-4=9,∴S2=$\frac{9}{{q}^{2}}$+$\frac{9}{q}$=4,化为:4q2-9q-9=0,q>0,解得q=3.
∴an=${a}_{3}{q}^{n-3}$=9×3n-3=3n-1
(2)解:Tn=$\frac{n(1+2n-1)}{2}$=n2
由(1)可得:Sn=$\frac{{3}^{n}-1}{3-1}$=$\frac{{3}^{n}-1}{2}$.
∴S10=$\frac{1}{2}({3}^{10}-1)$.
T243=2432=310
∴2S10=310-1<310=T243
∴2S10<T243
(3)证明:bn=$\frac{{a}_{n+1}-{a}_{n}}{({a}_{n}+1)({a}_{n+1}+1)}$=$\frac{{3}^{n}-{3}^{n-1}}{({3}^{n-1}+1)({3}^{n}+1)}$=$\frac{1}{{3}^{n-1}+1}$-$\frac{1}{{3}^{n}+1}$,
∴b1+b2+…+bn=$(\frac{1}{2}-\frac{1}{3+1})$+$(\frac{1}{3+1}-\frac{1}{{3}^{2}+1})$+…+$(\frac{1}{{3}^{n-1}+1}-\frac{1}{{3}^{n}+1})$
=$\frac{1}{2}$-$\frac{1}{{3}^{n}+1}$<$\frac{1}{2}$.

点评 本题考查了等比数列的通项公式与求和公式、裂项求和方法与数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2$\sqrt{3}sin({x+\frac{π}{4}})cos({x+\frac{π}{4}})+sin2x+a$的最大值为1.
(1)求函数f(x)的单调递增区间;
(2)将f(x)的图象向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象,求g(x)在x∈[0,$\frac{π}{2}$]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[90,100),[100,110),…,[140,150)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求分数在[120,130)内的频率,并补全这个频率分布直方图;                                    
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2个,求至多有1人在分数段[120,130)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,已知正方体ABCD-A′B′C′D′.直线BA′和CC′的夹角是45°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.我国是世界上严重缺水的国家,某市政府为了制定合理的节水方案,对居民用水进行了调查,通过抽样,获得了100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中a的值;
(Ⅱ)估计居民月均用水量的中位数;
(Ⅲ)若居民用水量小于0.5吨,将被授予“节水达人”称号,在[0,0.5)、[4,4.5]两组种任选两人,求至少有一位“节水达人”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知过点A(0,1)且斜率为k的直线与圆C:(x-2)2+(y-3)2=1相交于M、N两点.
(1)求实数k的取值范围;
(2)求证:$\overrightarrow{AM}$•$\overrightarrow{AN}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某校在一次期中考试结束后,把全校文、理科总分前10名学生的数学成绩(满分150分)抽出来进行对比分析,得到如图所示的茎叶图.若从数学成绩高于120分的学生中抽取3人,则满足理科人数多于文科人数的情况有(  )种.
A.401B.252C.308D.201

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知抛物线y2=12x的焦点为F,P是该抛物线上一动点,点A(4,1),则|PA|+|PF|的最小值是(  )
A.4B.7C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设P为有公共焦点F1,F2的椭圆C1与双曲线C2的一个交点,且PF1⊥PF2,椭圆C1的离心率为e1,双曲线C2的离心率为e2,若e1=3e2,则e1=$\sqrt{5}$.

查看答案和解析>>

同步练习册答案