精英家教网 > 高中数学 > 题目详情
12.设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{1}}$是两个不共线的向量,且$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$与$\overrightarrow{b}$=-$\frac{1}{3}$$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$共线,则实数λ=(  )
A.-1B.3C.-$\frac{1}{3}$D.$\frac{1}{3}$

分析 若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$与$\overrightarrow{b}$=-$\frac{1}{3}$$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$共线,则存在实数μ使得:$\overrightarrow{a}$=μ$\overrightarrow{b}$,即$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$=μ(-$\frac{1}{3}$$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$),根据平面向量的基本定理,可得答案.

解答 解:∵$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{1}}$是两个不共线的向量,
若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$与$\overrightarrow{b}$=-$\frac{1}{3}$$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$共线,
则存在实数μ使得:$\overrightarrow{a}$=μ$\overrightarrow{b}$,即$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$=μ(-$\frac{1}{3}$$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$),
即$\left\{\begin{array}{l}{1=-μ}\\{λ=-\frac{1}{3}μ}\end{array}\right.$,解得:λ=$\frac{1}{3}$,
故选:D

点评 本题考查的知识点是平面向量的基本定义,向量共线定理,方程思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若直线a∥平面α,直线b?α,a⊥b,则在平面α内到直线a和直线b距离相等的点的轨迹是(  )
A.B.抛物线C.椭圆D.双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C的方程为(x+a)2+y2=16,F点坐标为(-6,0),过点F且斜率k=1的直线与圆相交所得的弦长为2$\sqrt{14}$.
(1)求圆C的方程;
(2)若圆心在点F的右侧,在平面上是否存在定点P,使得对圆C上任意的点G有$\frac{\left|GF\right|}{\left|GP\right|}$=$\frac{1}{2}$?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=-x3+3x(x<0)的极值点为x0,则x0=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知S-ABCD为正四棱锥,AB=2,SA=3,求棱锥的高和棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,若$\overrightarrow{a}$=$\overrightarrow{OD}$,$\overrightarrow{b}$=$\overrightarrow{OE}$,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,点P是以点O为圆心的圆弧$\widehat{DE}$上一动点,设$\overrightarrow{OP}$=x$\overrightarrow{OD}$+y$\overrightarrow{OE}$(x,y∈R),求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=x3-4x2+4x的极小值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.动点P在椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1,Q点在圆C:x2+(y-5)2=1上移动,试求PQ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C:x2+y2-8x-4y+4=0及直线l:(2m+1)x+(m-1)y=7m-1(m∈R).
(1)证明:不论m取什么实数,直线l与圆C一定相交;
(2)求直线l与圆C所截得的弦长的最短长度及此时直线l的方程.

查看答案和解析>>

同步练习册答案