精英家教网 > 高中数学 > 题目详情
17.函数y=$\sqrt{1-tan2x}$的定义域为($\frac{1}{2}$kπ-$\frac{π}{4}$,$\frac{1}{2}$kπ+$\frac{π}{8}$],k∈Z.

分析 根据函数成立的条件建立不等式关系即可得到结论.

解答 解:要使函数有意义,则1-tan2x≥0,
即tan2x≤1,
即kπ-$\frac{π}{2}$<2x≤kπ+$\frac{π}{4}$,k∈Z,
即$\frac{1}{2}$kπ-$\frac{π}{4}$<x≤$\frac{1}{2}$kπ+$\frac{π}{8}$,
即函数的定义域为($\frac{1}{2}$kπ-$\frac{π}{4}$,$\frac{1}{2}$kπ+$\frac{π}{8}$],k∈Z,
故答案为:($\frac{1}{2}$kπ-$\frac{π}{4}$,$\frac{1}{2}$kπ+$\frac{π}{8}$],k∈Z.

点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.高三年级从甲(文)、乙(理)两个科组各选出7名学生参加高校自主招生数学选拔考试,他们取得的成绩的茎叶图如图所示,其中甲组学生的平均分是85,乙组学生成绩的中位数是83.
(1)求x和y的值;
(2)计算甲组7位学生成绩的方差S2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}满足a${\;}_{n+1}^{2}$=a${\;}_{n}^{2}$+3且a1=1,an>0,则an=$\sqrt{3n-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若直线l1:(a+1)x+a2y-3=0与直线l:2x+ay-2a-1=0平行,则a=(  )
A.0B.1C.0或1D.0或-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,b2=ac,B=60°,则A=(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知正数x、y满足x+y=xy,则4x,y,$\frac{1}{x}$,$\frac{1}{y}$这4个数的平均数的(  )
A.最小值为2B.最小值为$\frac{5}{2}$C.最大值为2D.最大值为$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列函数的导数
(1)y=2xlog2x+ex1nx;
(2)y=1n$\frac{{x}^{2}}{sinx+cosx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法错误的是(  )
A.命题p:“?x0∈R,x02+x0+1<0”,则¬p:“?x∈R,x2+x+1≥0”
B.命题“若x2-4x+3=0,则x=3”的逆否命题是假命题
C.命题“若m>0,则方程x2+x-m=0有实数根”的否定是“若m>0,则方程x2+x-m=0没有实数根”
D.若p∧q为假命题,则p∨q为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数$f(x)=sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$在它的某一个周期内的单调减区间是$[\frac{5π}{12},\frac{11π}{12}]$.
(1)求f(x)的解析式;
(2)将y=f(x)的图象先向右平移$\frac{π}{6}$个单位,再将图象上所有点的横坐标变为原来的$\frac{1}{2}$倍(纵坐标不变),所得到的图象对应的函数记为g(x),若对于任意的$x∈[\frac{π}{8},\frac{3π}{8}]$,不等式|g(x)-m|<1恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案