【题目】已知圆
,点
,点
是圆上任意一点,线段
的垂直平分线交
于点
,设动点
的轨迹为
.
(Ⅰ)求
的方程;
(Ⅱ)设直线
与轨迹
交于
两点,
为坐标原点,若
的重心恰好在圆
上,求
的取值范围.
【答案】(Ⅰ)
;(Ⅱ)
.
【解析】试题分析:(1)如图,通过|QP|=|QN|,|MQ|+|QN|=|MP|=4,可知点Q的轨迹是以M、N为焦点,长轴长等于4的椭圆,即得椭圆C的方程;(2)设点G(x1,y1),H(x2,y2),联立直线l与椭圆C的方程,由韦达定理得x1+x2,从而可得y1+y2,及△GOH的重心的坐标并将其代入圆的方程,通过计算得
<1+4k2(k≠0),利用不等式即得实数m的取值范围.
解析:
(Ⅰ)如图,
![]()
故点
的轨迹是以
为焦点,长轴长等于4的椭圆
所以椭圆
的方程为
.
(Ⅱ)设点![]()
方程联立
得,
,
所以
的重心的坐标为
整理得:
①
依题意
得
②
由①、②易得
设
,则
,当且仅当
取等号
所以实数
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】如图1,
,
,过动点A作
,垂足D在线段BC上且异于点B,连接AB,沿
将△
折起,使
(如图2所示).
![]()
(1)当
的长为多少时,三棱锥
的体积最大;
(2)当三棱锥
的体积最大时,设点
,
分别为棱
,
的中点,试在棱
上确定一点
,使得
,并求
与平面
所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x2-ax+a)e-x,a∈R
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设g(x)=f’(x),其中f’(x)为函数f(x)的导函数.判断g(x)在定义域内是否为单调函数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1)五边形
中, ![]()
,将
沿
折到
的位置,得到四棱锥
,如图(2),点
为线段
的中点,且
平面
.
(1)求证:平面
平面
;
(2)若直线
与所成角的正切值为
,求直线
与平面
所成角的正弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:极坐标与参数方程
在极坐标系中,已直曲线
,将曲线C上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线C1,又已知直线
,且直线
与C1交于A、B两点,
(1)求曲线C1的直角坐标方程,并说明它是什么曲线;
(2)设定点
, 求
的值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的长轴长为4,焦距为![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)过动点
的直线交
轴与点
,交
于点
(
在第一象限),且
是线段
的中点.过点
作
轴的垂线交
于另一点
,延长
交
于点
.
(ⅰ)设直线
的斜率分别为
,证明
为定值;
(ⅱ)求直线
的斜率的最小值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}各项均为正数,其前n项和为Sn,且a1=1,anan+1=2Sn.(n∈N*)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{n·
}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ex-ax-1.
(1)当a>0时,设函数f(x)的最小值为g(a),求证:g(a)≤0;
(2)求证:对任意的正整数n,都有1n+1+2n+1+3n+1+…+nn+1<(n+1)n+1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com