精英家教网 > 高中数学 > 题目详情
7.等比数列{an}中,Sn表示其前n项和,a3=2S2+1,a4=2S3+1,则公比q为(  )
A.±2B.±3C.2D.3

分析 由a3=2S2+1,a4=2S3+1,两式相减可得:a4-a3=2a3,即可得出.

解答 解:由a3=2S2+1,a4=2S3+1,两式相减可得:a4-a3=2a3,可得q=$\frac{{a}_{4}}{{a}_{3}}$=3,
故选:D.

点评 本题考查了等比数列的通项公式、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在△ABC中,a,b,c分别为角A,B,C所对的边,且sin2A+2sinCcosB=sin(C-B).
(1)求A;
(2)若3sinB=4sinC,S△ABC=3$\sqrt{3}$,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|sinx=$\frac{1}{2}$},集合B={x|tanx=-$\frac{\sqrt{3}}{3}$},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.四棱锥P-ABCD中,四边形ABCD为正方形,PD⊥平面ABCD,PD=DA=2,F,E分别为AD、PC的中点.
(1)证明:DE∥平面PFB;
(2)求三棱锥A-PFB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD的底面ABCD为矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.
(Ⅰ)求证:直线DA⊥平面PAB;
(Ⅱ)求三棱锥B-PAC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={-1,0,1},B={y|y=x2-x,x∈A},则A∩B=(  )
A.?{0}?B.{2}C.?{0,1}?D.{-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知不等式组$\left\{\begin{array}{l}{y≤x}\\{x+y≤8}\\{y≥a}\end{array}\right.$表示的平面区域的面积为25,点P(x,y)在所给平面区域内,则z=2x+y的最大值为17.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某高中准备租用甲、乙两种型号的客车安排900名学生去冰雪大世界游玩.甲、乙两种车辆的载客量分别为36人/辆和60人/辆,租金分别为400元/辆和600元/辆,学校要求租车总数不超过21辆,且乙型车不多于甲型车7辆,则学校所花租金最少为9200元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,直线AB垂直平面α于点B,直线l在平面α内,点C,D在l上,∠BCD=90°,∠CDB=45°,AB=80cm,CD=60cm.求点A到直线l的距离.

查看答案和解析>>

同步练习册答案