分析 (I)根据矩形的性质得出AD⊥AB,AD∥BC,由BC⊥PB得出AD⊥BP,故AD⊥平面PAB;
(II)将△PAB当作棱锥的底面,则棱锥的高为BC,代入体积公式计算.
解答 (I)证明:∵四边形ABCD是矩形,∴AD⊥AB,AD∥BC.
∵∠PBC=90°,∴BC⊥PB,
∴AD⊥PB,又AB?平面APB,BP?平面ABP,AB∩BP=B,
∴DA⊥平面PAB.
(II)解:∵AD∥BC,AD⊥平面PAB,
∴BC⊥平面PAB,BC=AD=1.
∵S△PAB=$\frac{1}{2}PA•AB•sin∠PAB$=$\frac{1}{2}×1×2×\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}$.
∴三棱锥B-PAC的体积V=$\frac{1}{3}{S}_{△PAB}•BC$=$\frac{1}{3}×\frac{\sqrt{3}}{2}×1$=$\frac{\sqrt{3}}{6}$.
点评 本题考查了线面垂直的判定,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①④③② | B. | ①④②③ | C. | ④①②③ | D. | ③④②① |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com