精英家教网 > 高中数学 > 题目详情
4.已知集合A={1,2,3},B={x∈Z|(x+2)(x-3)<0},则A∪B(  )
A.{1}B.{-1,0,1,2,3}C.{1,2}D.{0,1,2,3}

分析 先分别求出集合A,B,由此利用并集定义能求出A∪B.

解答 解:∵集合A={1,2,3},
B={x∈Z|(x+2)(x-3)<0}={-1,0,1,2,},
∴A∪B={-1,01,1,2,3}.
故选:B.

点评 本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知函数 f(x)=$\frac{a}{x}$+xlnx,g(x)=x3-x2-5,若对任意的x1,x2∈[$\frac{1}{2}$,2],都有f(x1)-g(x2)≥2成立,则a的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.两位同学约定下午5:30~6:00在图书馆见面,且他们在5:30~6:00之间到达的时刻是等可能的,先到的同学须等待,15分钟后还未见面便离开,则两位同学能够见面的概率是(  )
A.$\frac{11}{36}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设i为虚数单位,则$\frac{3-i}{i}$=(  )
A.-1-3iB.1-3iC.-1+3iD.1+3i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设m,n∈R,若直线(m+1)x+(n+1)y-4=0与圆(x-2)2+(y-2)2=4相切,则m+n的取值范围是x≥2+2$\sqrt{2}$或x≤2-2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数x,y满足$\left\{\begin{array}{l}{y≥0}\\{x+y≤0}\\{2x+y+2≤0}\end{array}\right.$且ax-y+1-a=0,则实数a的取值范围是(  )
A.[-$\frac{1}{3}$,1)B.[-1,$\frac{1}{2}$]C.(-1,$\frac{1}{2}$]D.[-$\frac{1}{3}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α为参数,-π<α<0),曲线C2的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}-\frac{\sqrt{3}}{2}t}\\{y=5+\sqrt{3}t}\end{array}\right.$(t为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1的极坐标方程和曲线C2的普通方程;
(2)射线θ=-$\frac{π}{4}$与曲线C1的交点为P,与曲线C2的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图:区域A是正方形OABC(含边界),区域B是三角形ABC(含边界).
(Ⅰ)向区域A随机抛掷一粒黄豆,求黄豆落在区域B的概率;
(Ⅱ)若x,y分别表示甲、乙两人各掷一次骰子所得的点数,求点(x,y)落在区域B的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知棱长为$\sqrt{6}$的正四面体ABCD(四个面都是正三角形),在侧棱AB上任取一点P(与A,B都不重合),若点P到平面BCD及平面ACD的距离分别为a,b,则$\frac{4}{a}$+$\frac{1}{b}$的最小值为(  )
A.$\frac{7}{2}$B.4C.$\frac{9}{2}$D.5

查看答案和解析>>

同步练习册答案