精英家教网 > 高中数学 > 题目详情

已知双曲线的焦点在x轴上,两个顶点间的距离为2,焦点到渐近线的距离为.

(1)求双曲线的标准方程;

(2)写出双曲线的实轴长、虚轴长、焦点坐标、离心率、渐近线方程.

 

(1)x2-=1(2)y=±x.

【解析】(1)依题意可设双曲线的方程为=1(a>0,b>0),则2a=2,所以a=1.设双曲线的一个焦点为(c,0),一条渐近线的方程为bx-ay=0,则焦点到渐近线的距离d==b=,所以双曲线的方程为x2-=1.

(2)双曲线的实轴长为2,虚轴长为2,焦点坐标为(-,0),(,0),离心率为,渐近线方程为y=±x.

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第十一章第4课时练习卷(解析版) 题型:解答题

如图,从A1(1,0,0)、A2(2,0,0)、B1(0,1,0)、B2(0,2,0)、C1(0,0,1)、C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).

(1)求V=0的概率;

(2)求V的分布列及数学期望E(V).

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第9课时练习卷(解析版) 题型:填空题

已知抛物线y2=2px,以过焦点的弦为直径的圆与抛物线准线的位置关系是________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第8课时练习卷(解析版) 题型:解答题

根据下列条件,求双曲线方程.

(1)与双曲线=1有共同的渐近线,且过点(-3,2);

(2)与双曲线=1有公共焦点,且过点(3,2).

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第8课时练习卷(解析版) 题型:填空题

若双曲线=1的离心率e=2,则m=________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第8课时练习卷(解析版) 题型:填空题

若双曲线-y2=1的一个焦点为(2,0),则它的离心率为________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第7课时练习卷(解析版) 题型:解答题

已知椭圆=1(a>b>0)的离心率为,且过点P,A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.

(1)求椭圆方程;

(2)若圆N与x轴相切,求圆N的方程;

(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第6课时练习卷(解析版) 题型:解答题

如图,已知椭圆=1(a>b>0),F1、F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.

(1)若∠F1AB=90°,求椭圆的离心率;

(2)若=2·,求椭圆的方程.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:填空题

已知圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是________.

 

查看答案和解析>>

同步练习册答案