精英家教网 > 高中数学 > 题目详情
9.已知函数$f(x)={(sinx+cosx)^2}-2\sqrt{3}{cos^2}x+\sqrt{3}$.
(1)求f(x)的单调递增区间;
(2)求函数$y=f(x+\frac{π}{12})$,$x∈[{0,\frac{π}{2}}]$的值域.

分析 (1)由三角函数公式化简可得f(x)=2sin(2x-$\frac{π}{3}$)+1,解不等式$2kπ-\frac{π}{2}≤2x-\frac{π}{3}≤2kπ+\frac{π}{2}$可得;
(2)由(1)可得$y=f(x+\frac{π}{12})=2sin(2x-\frac{π}{6})+1$,由x的范围和三角函数的值域可得.

解答 解:(1)由三角函数公式化简可得:
f(x)=1+sin2x-2$\sqrt{3}$•$\frac{1+cos2x}{2}$+$\sqrt{3}$
=sin2x-$\sqrt{3}$cos2x+1=2sin(2x-$\frac{π}{3}$)+1,
由$2kπ-\frac{π}{2}≤2x-\frac{π}{3}≤2kπ+\frac{π}{2}$可得$kπ-\frac{π}{12}≤x≤kπ+\frac{5π}{12},k∈Z$,
∴f(x)的单调递增区间为:$[kπ-\frac{π}{12},kπ+\frac{5π}{12}],k∈Z$;
(2)由(1)可得$y=f(x+\frac{π}{12})=2sin(2x-\frac{π}{6})+1$,
∵$0≤x≤\frac{π}{2}$,∴$-\frac{π}{6}≤2x-\frac{π}{6}≤\frac{5π}{6}$,
∴$-\frac{1}{2}≤sin(2x-\frac{π}{6})≤1$,∴0≤y≤3
∴函数的值域为:[0,3]

点评 本题考查三角函数的最值,涉及三角函数的单调性和最值,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)的定义域为R,对任意实数x,y满足f(x+y)=f(x)f(y),f(x)>0,f(2)=9
(1)求f(0),f(1);
(2)验证函数f(x)=3x是否满足上述条件?说明理由;
(3)设函数f(x)在R上是增函数,若$f({m^2})>\frac{27}{f(2m)}$,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数f(x)=(m+1)x2-2mx+m-1.
(1)如果函数f(x)的两个零点在原点左右两侧,求实数m的取值范围;
(2)如果函数f(x)在(-∞,-1)上有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设集合A={x|a-2<x<a+2},B={x|-2<x<3}.
(1)若A⊆B,求实数a的取值范围
(2)若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数$f(x)=\left\{\begin{array}{l}1,x为有理数\\-1,x为无理数\end{array}\right.$(  )
A.函数f(x)的值域为[-1,1]B.函数f(x)在R上为单调函数
C.函数f(x)为奇函数D.函数f(x)为偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,墙上挂有一长为2π,宽为2的矩形木板ABCD,它的阴影部分是由函数y=cosx,x∈[0,2π]的图象和直线y=1围成的,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是(  )
A.$\frac{2}{π}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a=log1.10.9,b=log0.80.9,c=1.10.9则a,b,c的大小关系是(  )
A.a<c<bB.a<b<cC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}的通项公式为an=n2-10n+17,则数列{an}中使an<0的n构成的集合为{1,2,3,4,5,6,7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=-x3-x,x∈[m,n],且f(m)•f(n)<0,则f(x)在[m,n]内(  )
A.至少有一实数根B.至少有两个实数根
C.无实根D.有唯一实数根

查看答案和解析>>

同步练习册答案