精英家教网 > 高中数学 > 题目详情
已知集合A={x|2<x<4},集合B={x|a<x<2a},若B⊆A,求a的取值.
考点:集合的包含关系判断及应用
专题:集合
分析:根据集合之间的关系分情况讨论∴①a≤0时,B=Φ,此时满足B⊆A②a>0时,
a≥2
2a≤4
即B是A的子集,求出a的取值范围,不要落下B为空集的情况.
解答: 解:∵集合A={x|2<x<4},集合B={x|a<x<2a},若B⊆A,
∴①a≤0时,B=Φ,此时满足B⊆A
②a>0时,
a≥2
2a≤4

∴a=2
综上所述,a的取值为a≤0或a=2
点评:本题主要考查集合的基本运算,属于基础题.要正确判断两个集合间包含的关系,必须对集合的相关概念有深刻的理解,善于抓住代表元素,认清集合的特征.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设i为虚数单位,则复数(
1+i
1-i
2003+(
1-i
1+i
2004等于(  )
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简:
sin2(α+π)•cos(π+α)•cot(-α-2π)
tan(π+α)•cos3(-α-π)

(2)已知sin(π+α)=
1
2
,求sin(2π-α)-cot(α-π)•cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2αcos2x+bsinxcosx,且f(0)=2,f(
π
3
1
2
+
3
2

(1)求函数f(x)的单调减区间和对称轴方程;
(2)求函数f(x)取得最大值和最小值时对应的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
x
+
1
2•
4x
n的展开式前三项中的x的系数成等差数列.
(1)展开式中所有的x的有理项为第几项?
(2)求展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=(-x2+ax)ex(x∈R,e为自然对数的底数).问函数f(x)是否为R上的单调递减函数?若是,求出a的取值范围;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断函数y=
1
2(x-2)2
+1在区间(2,+∞)内的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx的图象过点(-4n,0),且f′(0)=2n,n∈N*,数列{an}满足
1
an+1
=f′(
1
an
)
,且a1=4,
(Ⅰ)求数列{an}的通项公式
(Ⅱ)记bn=
anan+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x2+2,则函数f(x)=
 

查看答案和解析>>

同步练习册答案