精英家教网 > 高中数学 > 题目详情
13.已知{an}满足a1=1,a2=1,an+2-an+1-an=0,x1,x2是方程x2=x+1两根.求证:
(1)数列{an+1-x1an},和{an+1-x2an}均为等比数列.
(2)求an=?

分析 (1)由于x1,x2是方程x2=x+1,利用根与系数的关系可得:x1+x2=1,x1x2=-1.设an+2-αan+1=β(an+1-αan),化为an+2-(α+β)an+1+αβan=0,与an+2-an+1-an=0比较可得α+β=1,αβ=-1.即可证明.
(2)由x2-x-1=0,解得x1,2=$\frac{1±\sqrt{5}}{2}$.取x1=α=$\frac{1+\sqrt{5}}{2}$,${x}_{2}=β=\frac{1-\sqrt{5}}{2}$,可得:an+2-$\frac{1+\sqrt{5}}{2}$an+1=$\frac{1-\sqrt{5}}{2}$$({a}_{n+1}-\frac{1+\sqrt{5}}{2}{a}_{n})$,利用等比数列的通项公式可得:an+1-$\frac{1+\sqrt{5}}{2}$an=$(\frac{1-\sqrt{5}}{2})^{n}$,变形为:an+1+$\frac{\sqrt{5}}{5}$$•(\frac{1-\sqrt{5}}{2})^{n+1}$=$\frac{1+\sqrt{5}}{2}$$[{a}_{n}+\frac{\sqrt{5}}{5}•(\frac{1-\sqrt{5}}{2})^{n}]$,再利用等比数列的通项公式即可得出.

解答 (1)证明:∵x1,x2是方程x2=x+1,即x2-x-1=0的两根,
∴x1+x2=1,x1x2=-1.
设an+2-αan+1=β(an+1-αan),化为an+2-(α+β)an+1+αβan=0,
与an+2-an+1-an=0比较可得α+β=1,αβ=-1.
∴数列{an+1-x1an},和{an+1-x2an}均为等比数列.
(2)解:由x2-x-1=0,解得x1,2=$\frac{1±\sqrt{5}}{2}$.
取x1=α=$\frac{1+\sqrt{5}}{2}$,${x}_{2}=β=\frac{1-\sqrt{5}}{2}$,
则an+2-$\frac{1+\sqrt{5}}{2}$an+1=$\frac{1-\sqrt{5}}{2}$$({a}_{n+1}-\frac{1+\sqrt{5}}{2}{a}_{n})$,
∴数列$\{{a}_{n+1}-\frac{1+\sqrt{5}}{2}{a}_{n}\}$是等比数列,首项与公比为$\frac{1-\sqrt{5}}{2}$.
∴an+1-$\frac{1+\sqrt{5}}{2}$an=$(\frac{1-\sqrt{5}}{2})^{n}$,
变形为:an+1+$\frac{\sqrt{5}}{5}$$•(\frac{1-\sqrt{5}}{2})^{n+1}$=$\frac{1+\sqrt{5}}{2}$$[{a}_{n}+\frac{\sqrt{5}}{5}•(\frac{1-\sqrt{5}}{2})^{n}]$,
∴an+$\frac{\sqrt{5}}{5}$$•(\frac{1-\sqrt{5}}{2})^{n}$=$\frac{1}{\sqrt{5}}$$•\frac{1+\sqrt{5}}{2}$$•(\frac{1+\sqrt{5}}{2})^{n-1}$=$\frac{1}{\sqrt{5}}$•$(\frac{1+\sqrt{5}}{2})^{n}$,
∴an=$\frac{\sqrt{5}}{5}$$[(\frac{1+\sqrt{5}}{2})^{n}-(\frac{1-\sqrt{5}}{2})^{n}]$.

点评 本题考查了数列递推关系、等比数列的通项公式、“斐波那契数列的通项公式”,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.噪声污染已经成为影响人们身体健康和生活质m的严重问题,为了了解强度D(单位:分贝)与声音能量I(单位:W/cm2)之间的关系,将测量得到的声音强度Di和声音能量Ii(i=1.2.…,10)数据作了初步处理,得到下面的散点图及一些统计量的值.
$\overline{I}$$\overline{D}$$\overline{W}$$\sum_{i=1}^{10}$(Ii-$\overline{I}$)2$\sum_{i=1}^{10}$(Wi-$\overline{W}$)2$\sum_{i=1}^{10}$(Ii-$\overline{I}$)(Di-$\overline{D}$)$\sum_{i=1}^{10}$(Wi-$\overline{W}$)(Di-$\overline{D}$)
1.04×10-1145.7-11.51.56×10-210.516.88×10-115.1
表中Wi=lgIi,$\overline{W}$=$\frac{1}{10}$$\sum_{i=1}^{10}$Wi
(Ⅰ)根据表中数据,求声音强度D关于声音能量I的回归方程D=a+blgI;
(Ⅱ)当声音强度大于60分贝时属于噪音,会产生噪声污染,城市中某点P共受到两个声源的影响,这两个声源的声音能量分别是I1和I2,且$\frac{1}{I_1}+\frac{1}{I_2}={10^{10}}$.已知点P的声音能量等于声音能量Il与I2之和.请根据(I)中的回归方程,判断P点是否受到噪声污染的干扰,并说明理由.
附:对于一组数据(μl,ν1),(μ2,ν2),…(μn,νn),其回归直线ν=α+βμ的斜率和截距的最小二乘估计分别为:β=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({u}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\overline{α}$=$\overline{v}$-β$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.直线x=1、x=2、y=0与曲线y=x3所围成的曲边梯形的面积为$\frac{15}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.为研究变量x和y的线性相关关系,甲、乙二人分别做了研究,利用线性回归方法得到回归直线l1和l2,由两人计算知,x相同,y也相同,则l1与l2的关系为(  )
A.垂直B.平行C.相交于点($\overline{x}$,$\overline{y}$)D.重合

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.圆锥轴截面是一等腰直角三角形,斜边长为10,则圆锥的体积是$\frac{125π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知{an}是等差数列,a1≠d,则a2+a8≠(  )
A.a1+a9B.a4+a6C.2a5D.a1+a3+a6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知A(a,0),B(3,2+a),直线y=$\frac{1}{2}$ax与线段AB交于M,且$\overrightarrow{AM}$=2$\overrightarrow{MB}$,则a等于2或-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.数列{an}满足a1=1,且当n∈N+时an3+(1+an2)(1-an+1)=0.
(Ⅰ)比较an+1与an的大小;
(Ⅱ)设bn=$\frac{{a}_{n+1}-1}{{a}_{n}}$($\frac{1}{{{a}_{n}}^{2}}$-$\frac{1}{{{a}_{n+1}}^{2}}$),数列{bn}的前n项和为Tn,求证:[Tn]=0.
([x]表示不大于实数x的最大整数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=ex-2ax,函数g(x)=-x3-ax2.若不存在x1,x2∈R,使得f′(x1)=g′(x2),则实数a的取值范围为(  )
A.(-2,3)B.(-6,0)C.[-2,3]D.[-6,0]

查看答案和解析>>

同步练习册答案