精英家教网 > 高中数学 > 题目详情
10.某生物探测器在水中逆流行进时,所消耗的能量为E=cvnT,其中v为进行时相对于水的速度,T为行进时的时间(单位:h),c为常数,n为能量次级数,如果水的速度为4km/h,该生物探测器在水中逆流行进200km.
(1)求T关于v的函数关系式;
(2)①当能量次级数为2时,求探测器消耗的最少能量;
②当能量次级数为3时,试确定v的大小,使该探测器消耗的能量最少.

分析 (1)分别求出探测器相对于河岸的速度,建立条件即可即可求T关于v的函数关系式;
(2)①当能量次级数为2时,利用分式函数的性质结合基本不等式进行求解.
②当能量次级数为3时,求函数的导数,利用导数研究函数的最值即可.

解答 解:(1)由题意得,该探测器相对于河岸的速度为$\frac{200}{T}$,
又该探测器相对于河岸的速度比相对于水的速度小于4km/h,即为v-4,
则$\frac{200}{T}$=v-4,即T=$\frac{200}{v-4}$,(v>4);
(2)①当能量次级数为2时,由(1)知,v>4,
E=200c$•\frac{{v}^{2}}{v-4}$=200c$•\frac{[(v-4)+4]^{2}}{v-4}$=200c•[(v-4)+$\frac{16}{v-4}$+8]
≥200c[2$\sqrt{(v-4)•\frac{16}{v-4}}$+8]=3200c,当且仅当v-4=$\frac{16}{v-4}$,即v=8km/h时取等号,
②当能量次级数为3时,由(1)知,E=200c•$\frac{{v}^{3}}{v-4}$,v>4,
则E′=200c•$\frac{2{v}^{2}(v-6)}{(v-4)^{2}}$,由E′=0,解得v=6,
即当v<6时,E′<0,
当v>6时,E′>0,即当v=6时,函数E取得最小值为E=21600C.

点评 本题主要考查函数的应用问题,以及利用基本不等式和导数求解函数的最值,考查学生的运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在四棱锥P-ABCD中,PA⊥平面ABCD,E是PD的中点,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,AC=AP=2.
(Ⅰ)求证:PC⊥AE;
(Ⅱ)求二面角A-CE-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设A、B是焦距为2$\sqrt{3}$的椭圆C1:x2+$\frac{y^2}{a^2}$=1(a>1)的左、右顶点,曲线C2上的动点P满足kAP-kBP=a,其中,kAP和kBP是分别直线AP、BP的斜率.
(1)求曲线C2的方程;
(2)直线MN与椭圆C1只有一个公共点且交曲线C2于M,N两点,若以线段MN为直径的圆过点B,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.解下列不等式:
(1)|4x2-10x-3|<3;
(2)|$\frac{3x}{{x}^{2}-4}$|≤1;
(3)|2x+1|>|5-x|;
(4)|x-x2-2|>x2-3x-4;
(5)|x-3|>|x+5|+7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.5个人坐一排,甲、乙必须相邻且甲不坐正中间的坐法有36种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)是偶函数,当x>0时,$f(x)=x+\frac{1}{x}$,且当$x∈[-\frac{3}{2},-\frac{1}{2}]$时,n≤f(x)≤m恒成立,则m-n的最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx-ax+$\frac{a}{x}$,其中a为常数.
(1)若0<a<1,求证:f($\frac{{a}^{2}}{2}$)>0;
(2)当函数f(x)存在三个不同的零点时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A、B、C的对边分别是a,b,c.若sinB=2sinC,a2-b2=$\frac{3}{2}$bc,则角A等于(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列说法:
①设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的线性回归方程为$\stackrel{∧}{y}$=0.85x-85.71,则若该大学某女生身高增加1cm,则其体重约增加0.85kg;
②命题“?x≥1,x2+3≥4”的否定是“?x<1,x2+3<4”
③相关系数r越小,表明两个变量相关性越弱;
④在一个2×2列联表中,由计算得K2=13.079,则有99%的把握认为这两个变量间有关系;
⑤已知随机变量ξ服从正态分布N(2,σ2),P(ξ≤5)=0.79,则P(ξ≤-1)=0.21;
其中错误的个数是(  )
本题可参考独立性检验临界值表:
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案