精英家教网 > 高中数学 > 题目详情
17.直线y=a与椭圆$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1恒有两个不同交点,则a的取值范围是(  )
A.(-$\sqrt{3}$,$\sqrt{3}$)B.(-3,3)C.(-2,2)D.(-4,4)

分析 画出图形,数形结合即得结论.

解答 解:如图,-2<a<2,
故选:C.

点评 本题考查椭圆的简单性质,注意解题方法的积累,属于基础题.
注:本题也可以通过联立直线与椭圆方程,消去y得到关于x的一元二次方程,再令根的判别式大于0计算即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.求下列函数的定义域:
(1)y=$\sqrt{{{log}_{\frac{1}{2}}}({{x^2}-1})}$
(2)y=$\sqrt{2sinx-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过点P(2,3),并且在两轴上的截距相等的直线方程是(  )
A.x+y-5=0B.3x-2y=0
C.x+y-5=0或3x-2y=0D.x-y+1=0或3x-2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,角A、B的对边分别为a、b且A=2B,sinB=$\frac{4}{5}$,则$\frac{a}{b}$的值是(  )
A.$\frac{3}{5}$B.$\frac{6}{5}$C.$\frac{4}{3}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.2015年安徽省文科高考数学试题考生一致认为比较简单,从而好成绩的取得不仅与知识掌握程度有关更与细节的把握程度有关(非知识错误)!学校就数学学科考试上是否有失误从本届文科毕业生中随机调查了100人,其中男生36人,有失误的学生中男生14人,女生16人.
(1)问:你有多大的把握认为细节的把握程度与性别有关?
(2)为了进一步调查考试中易犯哪些非知识错误,现用分层抽样的方法从100人中抽取样本容量为10的样本,求从这10人中任取两人,恰有一人犯有非知识错误的概率.
附:(1)临界值表:
p(k2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
(2)K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.平面内给定向量$\overrightarrow{a}$=(3,2),$\overrightarrow{b}$=(-1,2),$\overrightarrow{c}$=(1,6).满足($\overrightarrow{a}$+k$\overrightarrow{c}$)∥($\overrightarrow{a}$+$\overrightarrow{b}$),则实数k=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在矩形中ABCD中,AB=4,BC=2$\sqrt{3}$,M为动点,DM、CM的延长线与AB(或其延长线)分别交于点E、F,若$\overrightarrow{AE}$•$\overrightarrow{BF}$+$\overrightarrow{EF}$2=0.
(1)若以线段AB所在的直线为x轴,线段AB的中垂线为y轴建立平面直角坐标系,试求动点M的轨迹方程;
(2)不过原点的直线l与(1)中轨迹交于G、H两点,若GH的中点R在抛物线y2=4x上,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{2}$x2-2alnx+(a-2)x,a∈R.
(1)当a=1时,求函数f(x)图象在点(1,f(1))处的切线方程;
(2)当a<0时,讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若第一象限的点(a,b)关于直线x+y-2=0的对称点在直线2x+y+3=0上,则$\frac{1}{a}+\frac{8}{b}$的最小值是(  )
A.1B.3C.$\frac{25}{9}$D.$\frac{17}{9}$

查看答案和解析>>

同步练习册答案