精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\frac{1}{2}$x2-2alnx+(a-2)x,a∈R.
(1)当a=1时,求函数f(x)图象在点(1,f(1))处的切线方程;
(2)当a<0时,讨论函数f(x)的单调性.

分析 先求出函数的导数(1)将a=1代入,求出f′(1)的值,从而求出切线方程;
(2)通过讨论a的范围,求出f′(x)的符号,从而得到函数的单调性.

解答 解 f′(x)=x-$\frac{2a}{x}$+a-2=$\frac{(x-2)(x+a)}{x}$,(x>0),
(1)当a=1时,f′(x)=$\frac{(x-2)(x+1)}{x}$,f′(1)=-2,
∴所求的切线方程为y-f(1)=-2(x-1),即4x+2y-3=0.
(2)①当-a=2,即a=-2时,f′(x)=$\frac{{(x-2)}^{2}}{x}$≥0,f(x)在(0,+∞)上单调递增;
②当-a<2,即-2<a<0时,∵0<x<-a或x>2时,f′(x)>0;-a<x<2时,f′(x)<0,
f(x)在(0,-a),(2,+∞)上单调递增,在(-a,2)上单调递减;
③当-a>2,即a<-2时,∵0<x<2或x>-a时,f′(x)>0;
2<x<-a时,f′(x)<0,f(x)在(0,2),(-a,+∞)上单调递增,在(2,-a)上单调递减,
综上a=-2时,f(x)在(0,+∞)上单调递增.
-2<a<0时,f(x)在(0,-a),(2,+∞)上单调递增,在(-a,2)上单调递减,
a<-2时,f(x)在(0,2),(-a,+∞)上单调递增,在(2,-a)上单调递减.

点评 本题考查了曲线的切线方程问题,考查函数的单调性问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知集合U=R,集合M={y|y=2x,x∈R},集合N={x|y=lg(3-x)},则(∁UM)∩N=(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.直线y=a与椭圆$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1恒有两个不同交点,则a的取值范围是(  )
A.(-$\sqrt{3}$,$\sqrt{3}$)B.(-3,3)C.(-2,2)D.(-4,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.(x-$\frac{2}{\sqrt{x}}$)6的展开式中的常数项为(  )
A.240B.-240C.72D.-72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.数列{an}满足:a1=1,且对每个n∈N*,an,an+1是方程x2+3nx+bn=0的两根,则bn的前6项的和的4倍为(  )
A.183B.132C.528D.732

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\overrightarrow{m}$=(2sinx,-$\sqrt{3}$),$\overrightarrow{n}$=(cosx,2cosx2-1),若函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+1,
(1)求f(x)的最小正周期;
(2)求f(x)的单调增区间;
(3)求f(x)在[$\frac{π}{4}$,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在R上的奇函数f(x)的周期为4,其图象关于直线x=1对称,且当x∈(2,3]时,f(x)=-(x-2)(x-4),则f(sin$\frac{1}{2}$),f(sin1),f(cos2)的大小关系为(  )
A.f(cos2)>f(sin1)>f(sin$\frac{1}{2}$)B.f(cos2)>f(sin$\frac{1}{2}$)>f(sin1)
C.f(sin$\frac{1}{2}$)>f(cos2)>f(sin1)D.f(sin1)>f(sin$\frac{1}{2}$)>f(cos2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(1,4).
(Ⅰ) 若向量k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow a+2\overrightarrow b$平行,求k的值;
(Ⅱ) 若向量$k\overrightarrow a+\overrightarrow b$与$\overrightarrow a+2\overrightarrow b$的夹角为锐角,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知甲、乙两人分别位于图中的M、N两点,每隔1分钟,甲、乙两人分别向东南西北四个方向的其中一个方向行走1格,且甲向四个方向行走的概率是相等的,乙向东、向西行走的概率都是$\frac{1}{3}$,向北行走的概率是$\frac{1}{4}$,甲、乙分别向某个方向行走的事件记为A、B.
(1)分别求出甲、乙向南行走的概率;
(2)求两人经过1分钟相遇的概率.
(已知事件A、B同时发生的概率P(AB)=P(A)•P(B))

查看答案和解析>>

同步练习册答案