精英家教网 > 高中数学 > 题目详情
已知直线l:y=kx+1过定点A,动点M(x,y)满足|
MA
|=|y+1|,动点M的轨迹为C.
(1)求C的方程;
(2)直线l与C交于P、Q两点,以P、Q为切点分别作C的切线,两条切线交于点B.
①求证:AB⊥PQ;
②若直线AB与C交于R、S两点,求四边形PRQS面积的最小值.
考点:直线和圆的方程的应用
专题:计算题,证明题,直线与圆,圆锥曲线的定义、性质与方程
分析:(1)求出定点A,再由两点距离公式,化简整理即可得到C的方程;
(2))①设P(x1,y1),Q(x2,y2),由抛物线上一点的切线方程得到切线,两式相减,求得B的横坐标,代入求得纵坐标,再由直线的斜率即可判断垂直;
②联立直线方程和抛物线方程,运用韦达定理,再设四边形PRQS面积S=
1
2
|PQ|•|RS|,运用弦长公式,化简整理,再由基本不等式,即可求出最小值.
解答: (1)解:直线l:y=kx+1过定点A(0,1),
动点M(x,y)满足|
MA
|=|y+1|,则有x2+(y-1)2=(y+1)2
化简得,x2=4y,即有C的方程:x2=4y;
(2)①设P(x1,y1),Q(x2,y2),则y1=kx1+1,
由直线l和抛物线方程,联立,消去y,得,x2-4kx-4=0,
x1+x2=4k,x1x2=-4,
由抛物线上一点的切线方程得,x1x=2(y+y1),x2x=2(y+y2),
两式相减得,x=
2(y1-y2)
x1-x2
=2k,则y=kx1-y1=-1.
即有B(2k,-1),AB斜率为
1+1
-2k
=-
1
k

则有AB⊥PQ;
②直线AB:y=-
1
k
x+1与抛物线交于R(x3,y3),S(x4,y4),
则易得x3+x4=
4
-k
,x3x4=-4,
四边形PRQS面积S=
1
2
|PQ|•|RS|=
1
2
1+k2
(x1+x2)2-4x1x2

1+
1
k2
(x3+x4)2-4x3x4

=
1
2
1+k2
(4k)2-4×(-4)
1+
1
k2
(
4
-k
)2-4×(-4)

=8
(1+k2)2
k2
=8(k2+
1
k2
+2)≥8(2
k2
1
k2
+2)=32.
当且仅当k=±1,取得最小值32.
则四边形PRQS面积的最小值为32.
点评:本题考查抛物线方程及运用,考查直线方程和抛物线方程联立,消去未知数,运用韦达定理,弦长公式,化简整理,考查基本不等式的运用和切线的方程求法,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|x≥2014},B={x|x≥2015},则集合A∪B=(  )
A、{x|x≥2014}
B、{x|x≥2015}
C、{x|2014≤x≤2015}
D、{x|x≤2014或x≥2015}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直三棱柱ABC-A1B1C1的底面ABC是等腰直角三角形,且∠ABC=90°,AC=2a,BB1=3a,D为A1C1的中点.问在线段AA1是否存在点F,使CF⊥面B1DF.

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间四边形ABCD中,M、N分别是AD、BC的中点,若AB-CD=1,且AB⊥CD,则MN的长度是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:椭圆4x2+y2=1,直线y=x+m,当m为何值时,直线与椭圆相切?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B是椭圆
x2
16
+
y2
9
=1的两个顶点,C、D是椭圆上两点,且分别在AB两侧,则四边形ABCD面积最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1,则下列四个命题:
①P在直线BC1上运动时,三棱锥A-D1PC的体积不变;
②P在直线BC1上运动时,直线AP与平面ACD1所成角的大小不变;
③P在直线BC1上运动时,二面角P-AD1C的大小不变;
④M是平面A1B1C1D1上到点D和C1距离相等的点,则M点的轨迹是过D1点的直线
其中真命题的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:若f(x)对定义域内的任意x都有f(x+a)=-f(x)(a≠0),则T=2a.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=3cos(2x+φ)是奇函数,则|φ|的最小值是
 

查看答案和解析>>

同步练习册答案