精英家教网 > 高中数学 > 题目详情
设不等式组
0≤x≤6
0≤y≤6
表示的区域为A,不等式组
0≤x≤6
x-y≥0
表示的区域为B.
(1)在区域A中任取一点(x,y),求点(x,y)∈B的概率; 
(2)若x、y分别表示甲、乙两人各掷一次骰子所得的点数,求点(x,y)在区域B中的概率.
考点:列举法计算基本事件数及事件发生的概率
专题:概率与统计
分析:(1)本小题是几何概型问题,欲求点(x,y)∈C的概率,只须求出区域C的面积,再将求得的面积值与整个区域的面积求比值即得.
(2)本小题是古典概型问题,欲求点(x,y)在区域B中的概率,只须求出满足:使在区域B中的点(x,y)有多少个,再将求得的值与抽取的全部结果的个数36求比值即得.
解答: 解:(1)设集合A中的点(x,y)∈B为事件M,区域A的面积为S1=36,区域B的面积为S2=18,∴P(M)=
18
36
=
1
2

(2)设点(x,y)在区域B为事件N,甲、乙两人各掷一次骰子所得的点(x,y)的个数为36个,其中在区域B中的点(x,y)有21个,故P(N)=
21
36
=
7
12
点评:本小题主要考查古典概型、几何概型等基础知识.古典概型与几何概型的主要区别在于:几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,几何概型的特点有下面两个:(1)试验中所有可能出现的基本事件有无限多个.(2)每个基本事件出现的可能性相等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若m,n为两条不重合的直线,α,β为两个不重合的平面,给出下列四个命题:则真命题的个数是(  )
①若m∥α,n∥α,则m∥n;
②若m⊥α,n⊥β,且α∥β,则m∥n;
③若α⊥β,m⊥n,且m⊥α,则n⊥β;
④若α⊥β,m⊥α,则m∥β.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex(ax2-2x-2),a∈R且a≠0.
(1)若曲线y=f(x)在点P(2,f(2))处的切线垂直于y轴,求实数a的值;
(2)当a>0时,求函数f(|cosx|)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+1
2x-1

(1)若f(a)=2,求a的值;
(2)证明f(x)在x∈(0,+∞)单调递减;
(3)若x∈(1,4),求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)利用诱导公式求sin780°•cos(-420°)+sin(-330°)•cos(-300°)的值;
(2)求cos40°(1+
3
tan10°)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R,设命题p:方程
x2
m
+
y2
3-m
=1表示焦点在x轴上的双曲线.命题q:?x∈R,x2+2mx+
9
4
<0.若p∨q为真命题,p∧q为假命题.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(sinωx+cosωx,
3
cosωx),
n
=(cosωx-sinωx,2sinωx),其中ω>0,若函数f(x)=
m
n
,且函数f(x)的图象与直线y=2两相邻公共点间的距离为π.
(l)求ω的值;
(2)在△ABC中,以a,b,c(分别是角A,B,C的对边,且a=
3
,f(A)=1,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:x1和x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立;命题q:不等式ax2+2x-1>0有解,若p∨q为真命题,p∧q为假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点的双曲线的渐近线方程是y=±
3
x,且双曲线过点(
2
3

(Ⅰ)求双曲线的方程;
(Ⅱ)过双曲线右焦点F作倾斜角为
π
4
的直线交双曲线于A,B,求|AB|.

查看答案和解析>>

同步练习册答案