精英家教网 > 高中数学 > 题目详情

【题目】若三角形三边的长度为连续的三个自然数,则称这样的三角形为“连续整边三角形”。下列说法正确的是( )

A. “连续整边三角形”只能是锐角三角形

B. “连续整边三角形”不可能是钝角三角形

C. 若“连续整边三角形”中最大角是最小角的2倍,则这样的三角形有且仅有1个

D. 若“连续整边三角形”中最大角是最小角的2倍,则这样的三角形可能有2个

【答案】C

【解析】

举例三边长分别是的三角形是钝角三角形,否定AB,通过计算求出最大角是最小角的二倍的三角形,从而可确定C、D中哪个正确哪个错误.

三边长分别是的三角形,最大角为,则是钝角 ,三角形是钝角三角形,AB都错,

如图中,的平分线,则

又由的平分线,得,解得

∴“连续整边三角形”中最大角是最小角的2倍的三角形只有一个,边长分别为4,5,6,C正确,D错误.

故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】A,B,C是圆O上不同的三点,线段CO与线段AB交于点D,若 (λ∈R,μ∈R),则λ+μ的取值范围是(
A.(1,+∞)
B.(0,1)
C.(1, ]
D.(﹣1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为(  )

(结果精确到0.1.参考数据:lg2=0.3010lg3=0.4771.)

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=3cos2x的图象,只需把函数y=3sin(2x+ )的图象上所有的点(
A.向右平行移动 个单位长度
B.向右平行移动 个单位长度
C.向左平行移动 个单位长度
D.向左平移移动 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导数f′(x)< ,则不等式f(x2)< 的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家拟举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)万件与年促销费用万元()满足为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).

(1)将该产品的年利润万元表示为年促销费用万元的函数;

(2)该厂家年促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家具厂有方木料90,五合板600,准备加工成书桌和书橱出售.已知生产第张书桌需要方木料O.l,五合板2,生产每个书橱而要方木料0.2,五合板1,出售一张方桌可获利润80元,出售一个书橱可获利润120元.

(1)如果只安排生产书桌,可获利润多少?

(2)怎样安排生产可使所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在轴的正半轴上,且半径为2的圆被直线截得的弦长为.

1)求圆的方程;

2)设动直线与圆交于两点,则在轴正半轴上是否存在定点,使得直线与直线关于轴对称?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且.

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC ,求二面角A-PB-C的余弦值.

查看答案和解析>>

同步练习册答案