精英家教网 > 高中数学 > 题目详情
14.已知直线l:x+2y=0,圆C:x2+y2-6x-2y-15=0,求直线l被圆C所截得的线段的长.

分析 根据圆的方程找出圆心坐标和半径,过点A作AC⊥弦BD,可得C为BD的中点,根据勾股定理求出BC,即可求出弦长BD的长.

解答
解:过点A作AC⊥弦BD,垂足为C,连接AB,可得C为BD的中点.
由x2+y2-6x-2y-15=0,得(x-3)2+(y-1)2=25.
知圆心A为(3,1),r=5.
由点A(3,1)到直线x+2y=0的距离AC=$\frac{5}{\sqrt{5}}$=$\sqrt{5}$.
在直角三角形ABC中,AB=5,AC=$\sqrt{5}$,
根据勾股定理可得BC=$\sqrt{25-5}$=2$\sqrt{5}$,
则弦长BD=2BC=4$\sqrt{5}$.

点评 本题考查学生灵活运用垂径定理解决实际问题的能力,灵活运用点到直线的距离公式及勾股定理化简求值,会利用数形结合的数学思想解决数学问题,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2x+a•2-x,其中常数a≠0.
(1)当a=1时,f(x)的最小值;
(2)当a=256时,是否存在实数k∈(1,2],使得不等式f(k-cosx)≥f(k2-cos2x)对任意x∈R恒成立?若存在,求出所有满足条件的k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.己知平行四边形的周长为6,则其对角线长的平方和的最小值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标xOy中,${C_1}:\left\{{\begin{array}{l}{x=t}\\{y=t+5}\end{array}}\right.(t$为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线${C_2}:{ρ^2}+2{ρ^2}{sin^2}θ-3=0$.
(1)求C1的普通方程与C2的参数方程;
(2)根据(1)中你得到的方程,求曲线C2上任意一点P到C1的最短距离,并确定取得最短距离时P点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知正方体ABCD-A1B1C1D1的棱长为a,过B1作B1E⊥BD1于点E,则A、E两点之间的距离为$\frac{\sqrt{6}}{3}a$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.“a=2”是“直线(a2-a)x+y=0和直线2x+y+1=0互相平行”的充分不必要条件,若曲线y2=xy+2x+k通过点(a,-a)(a∈R),则k的取值范围是$[-\frac{1}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\left\{\begin{array}{l}{1-|x+1|,x∈[-2,0]}\\{2f(x-2),x∈(0,+∞)}\end{array}\right.$
(1)求函数f(x)在[-2,4]上的解析式;
(2)若方程f(x)=x+a在区间[-2,4]内有3个等实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={1,2,3},B={2,3},则(  )
A.A=BB.B∈AC.A?BD.B?A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设命题p:函数y=sin(2x+$\frac{π}{3}$)的图象向左平移$\frac{π}{6}$个单位长度得到的曲线关于y轴对称;命题q:函数y=|2x-1|在[-1,+∞)上是增函数.则下列判断错误的是(  )
A.p为假B.¬q为真C.p∨q为真D.p∧q为假

查看答案和解析>>

同步练习册答案