分析 设AB边上的高为h,则△AOB的面积S=$\frac{1}{2}$|AB|•h,再利用S=$\frac{1}{2}$|OA|•|OB|•sin∠AOB,即可得到结论.
解答 解:由题意,圆(x-1)2+y2=1是△AOB的外接圆,半径为1,根据正弦定理:|AB|=2Rsin∠AOB=2sin∠AOB,
设AB边上的高为h,则△AOB的面积$S=\frac{1}{2}|AB|•h=h•sin∠AOB$
∵$S=\frac{1}{2}|OA|•|OB|•sin∠AOB$=$\frac{1}{2}×2×sin∠AOB$
∴h=1为定值,
即O到AB的距离为定值1,
∴直线AB与以原点为圆心,1为半径的圆相切,圆的方程为x2+y2=1.
点评 本题考查直线与圆的位置关系,考查圆的方程,考查学生的计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (4,$\frac{π}{3}$) | B. | (4,$\frac{4π}{3}$) | C. | (-4,-$\frac{2π}{3}$) | D. | (4,-$\frac{2π}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{3}$ | B. | $\frac{16}{3}$ | C. | $\frac{32}{3}$ | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$π | B. | $\frac{4\sqrt{2}}{3}$π | C. | 4π | D. | 4$\sqrt{2}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | ($\frac{1}{2}$,1) | C. | (-1,2) | D. | (-1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com