精英家教网 > 高中数学 > 题目详情
1.如果x2+(y-k+1)2=2表示圆心在y轴负半轴上的圆,那么实数k的一个可能值是(  )
A.0B.1C.2D.3

分析 根据题意,分析可得x2+(y-k+1)2=2表示圆的圆心坐标为(0,k-1),进而分析可得k-1<0,即k<1,分析选项即可得答案.

解答 解:根据题意,x2+(y-k+1)2=2表示圆的圆心坐标为(0,k-1),
若其表示圆心在y轴负半轴上的圆,则有k-1<0,即k<1,
分析选项:A符合题意,
故选:A.

点评 本题考查圆的标准方程,关键是利用圆的标准方程分析圆心的坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.(1)已知a>0,求证:$\sqrt{a+5}-\sqrt{a+3}>\sqrt{a+6}-\sqrt{a+4}$
(2)证明:若a,b,c均为实数,且$a={x^2}-2y+\frac{π}{2}$,$b={y^2}-2z+\frac{π}{3}$,$c={z^2}-2x+\frac{π}{6}$,求证:a,b,c中至少有一个大于0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如a$\sqrt{a}$+b$\sqrt{b}$>a$\sqrt{b}$+b$\sqrt{a}$,则a,b必须满足的条件是(  )
A.a>b>0B.a<b<0C.a>bD.a≥0,b≥0,且a≠b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知随机变量ξ的分布列为:
ξ-2-10123
P$\frac{1}{12}$$\frac{3}{12}$$\frac{4}{12}$$\frac{1}{12}$$\frac{2}{12}$$\frac{1}{12}$
若$P({ξ^2}<x)=\frac{11}{12}$,则实数x的取值范围是(  )
A.4<x≤9B.4≤x<9C.x<4或x≥9D.x≤4或x>9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.正三棱柱ABC-A1B1C1底面△ABC的边长为3,此三棱柱的外接球的半径为$\sqrt{7}$,则异面直线AB1与BC1所成角的余弦值为$\frac{23}{50}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x+y)=f(x)+f(y)且f(1)=2,则f(1)+f(2)+…+f(n)不能等于(  )
A.f(1)+2f(1)+…+nf(1)B.f($\frac{n(n+1)}{2}$)C.n(n+1)D.n(n+1)f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.自原点O作圆(x-1)2+y2=1的不重合的两弦OA,OB,且|OA|•|OB|=2,若不论A,B两点的位置怎样,直线AB恒切与一个定圆,请求出定圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,内角A,B,C的对边分别为a,b,c,已知bsinA=3csinB,a=6,cosB=$\frac{1}{3}$.
(Ⅰ)求b;
(Ⅱ)求cos(2B+$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知抛物线的参数方程为$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t为参数),其中p>0,焦点为F,准线为l,过抛物线上一点M作l的垂线,垂足为E,若|EF|=|MF|,点M横坐标为6,则p=4.

查看答案和解析>>

同步练习册答案