精英家教网 > 高中数学 > 题目详情
16.正三棱柱ABC-A1B1C1底面△ABC的边长为3,此三棱柱的外接球的半径为$\sqrt{7}$,则异面直线AB1与BC1所成角的余弦值为$\frac{23}{50}$.

分析 先根据题意画出图形,再设三棱柱外接球的球半径为r,利用在直角三角形ADO中的边的关系求出正三棱本的高,作出空间直角坐标系,利用向量法能求出异面直线AB1与BC1所成角的余弦值.

解答 解:设三棱柱外接球的球心为O,球半径为r,
三棱柱的底面三角形ABC的中心为D,如图,
∵正三棱柱ABC-A1B1C1底面△ABC的边长为3,此三棱柱的外接球的半径为$\sqrt{7}$,
∴OA=$\sqrt{7}$,AD=$\frac{2}{3}×\sqrt{{3}^{2}-(\frac{3}{2})^{2}}$=$\sqrt{3}$,
∴OD=$\sqrt{7-3}$=2,∴AA1=4,
以A为原点,以过A在平面ABC中作AC的垂线为x轴,以AC为y轴,AA1为z轴,
建立空间直角坐标系,
A(0,0,0),B($\frac{3\sqrt{3}}{2}$,$\frac{3}{2}$,0),
B1($\frac{3\sqrt{3}}{2}$,$\frac{3}{2}$,4),C1(0,3,4),
$\overrightarrow{A{B}_{1}}$=($\frac{3\sqrt{3}}{2}$,$\frac{3}{2}$,4),$\overrightarrow{B{C}_{1}}$=(-$\frac{3\sqrt{3}}{2}$,$\frac{3}{2}$,4),
设异面直线AB1与BC1所成角为θ,
则cosθ=$\frac{|\overrightarrow{A{B}_{1}}•\overrightarrow{B{C}_{1}}|}{|\overrightarrow{A{B}_{1}}|•|\overrightarrow{B{C}_{1}}|}$=$\frac{\frac{23}{2}}{25}$=$\frac{23}{50}$.
∴异面直线AB1与BC1所成角的余弦值为$\frac{23}{50}$.
故答案为:$\frac{23}{50}$.

点评 本题考查三棱锥、球、空间中线线、线面间的相互关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,考查创新意识、应用意识,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右两个焦点分别为F1、F2,以线段F1F2为直径的圆与双曲线的渐近线在第一象限的交点为M,若|MF1|-|MF2|=2b,该双曲线的离心率为e,则e2=(  )
A.2B.$\frac{\sqrt{2}+1}{2}$C.$\frac{3+2\sqrt{2}}{2}$D.$\frac{\sqrt{5}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-$\frac{2}{3}$ax3(a>0),x∈R.求f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的体积为(  )
A.$\frac{8}{3}$B.$\frac{16}{3}$C.$\frac{32}{3}$D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,角A、B、C所对的边分别是a、b、c,若a=2,A=$\frac{π}{6}$,则△ABC外接圆的面积等于(  )
A.$\frac{π}{4}$B.πC.D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果x2+(y-k+1)2=2表示圆心在y轴负半轴上的圆,那么实数k的一个可能值是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数x,y,z满足x+2y+z=1,则x2+4y2+z2的最小值是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个几何体的三视图及尺寸如图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的体积为(  )
A.$\frac{4}{3}$πB.$\frac{4\sqrt{2}}{3}$πC.D.4$\sqrt{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,下顶点为B,直线BF2的方程为x-y-b=0.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)设P为椭圆上异于其顶点的一点,P到直线BF2的距离为$\sqrt{2}$b,且三角形PF1F2的面积为$\frac{1}{3}$.
(1)求椭圆C的方程;
(2)若斜率为k的直线l与椭圆C相切,过焦点F1,F2分别作F1M⊥l,F2M⊥l,垂足分别为M,N,求(|F1M|+|F2N|)•|MN|的最大值.

查看答案和解析>>

同步练习册答案