精英家教网 > 高中数学 > 题目详情

=(2cos,1),=(cos,sin2),·R.
⑴若=0且[,],求的值;
⑵若函数 ()与的最小正周期相同,且的图象过点(,2),求函数的值域及单调递增区间.

(1);(2)的值域为,单调递增区间为.

解析试题分析:(1)首先利用平面向量的坐标运算及和差倍半的三角函数公式,
化简为
根据=0及[,]求解.
(2)首先确定得到,根据,得到的值域为
单调递增区间为.
试题解析:(1)·=
=            3分
=0
[,]∴
                6分
(2)由(1)知          8分
   
的值域为,单调递增区间为.                12分
考点:平面向量的坐标运算,三角函数的和差倍半公式,三角函数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的图象的一部分如下图所示.

(Ⅰ)求函数的解析式;
(Ⅱ)当时,求函数的最大值与最小值及相应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量函数.
(1)求函数的最小正周期及单调递减区间;
(2)在锐角三角形ABC中,的对边分别是,且满足 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求的最小正周期;
(2)当时,求实数的值,使函数的值域恰为并求此时上的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,且
(1)求函数的单调增区间;
(2)证明无论为何值,直线与函数的图象不相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2sin(ωx+)(ω>0,0<<π)的图象如图所示.

(1)求函数f(x)的解析式:
(2)已知,且a∈(0,),求f(a)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,其中,若函数,且函数的图象与直线y=2两相邻公共点间的距离为
(l)求的值;
(2)在△ABC中,以a,b,c(分别是角A,B,C的对边,且,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)若处取得最大值,求的值;
(Ⅲ)求的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设向量.(1)若,求的值;
(2)设函数,求的最大、最小值.

查看答案和解析>>

同步练习册答案