精英家教网 > 高中数学 > 题目详情

设向量.(1)若,求的值;
(2)设函数,求的最大、最小值.

(1);(2)函数的最小值为,最大值为.

解析试题分析:(1)先由平面向量模的计算公式由条件得出的值,结合角的取值范围求出的值;(2)先由平面向量数量积的坐标运算求出函数的解析式,并将函数的解析式化简为,先由得出的取值范围,再利用余弦曲线确定函数在区间上的最大值与最小值.
试题解析:(1)

(2)

时,
即函数的最小值为,最大值为.
考点:1.平面向量模的计算;2.平面向量的数量积;3.二倍角公式;4.辅助角公式;5.三角函数的最值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

=(2cos,1),=(cos,sin2),·R.
⑴若=0且[,],求的值;
⑵若函数 ()与的最小正周期相同,且的图象过点(,2),求函数的值域及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在一个周期内的图象如图所示,点为图象的最高点,为图象与轴的交点,且三角形的面积为

(Ⅰ)求的值及函数的值域;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为R的函数的一段图象如图所示.

(1)求的解析式;
(2)若求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.(1)求的最小正周期、最大值及取最大值时的集合;
(2)若锐角满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在区间上的函数的图象关于直线对称,当时函数图象如图所示.

(Ⅰ)求函数的表达式;
(Ⅱ)求方程的解;
(Ⅲ)是否存在常数的值,使得上恒成立;若存在,求出 的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中的最小正周期为
(Ⅰ)求的值,并求函数的单调递减区间;
(Ⅱ)在锐角中,分别是角的对边,若的面积为,求的外接圆面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,已知内角,边.设内角的面积为.
(1)求函数的解析式和定义域;
(2)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)设,求的值;
(2)已知,且,求的值.

查看答案和解析>>

同步练习册答案