精英家教网 > 高中数学 > 题目详情

(1)设,求的值;
(2)已知,且,求的值.

(1);(2).

解析试题分析:(1)将所求式分子1换成,然后分子分母同除以,将其转化为关于的式子再进行计算即可,本题若由,去求出,则需要讨论,若想不到用代替1,则可原式分子分母同除以,然后再考虑求出,显然这两种方法较为麻烦;(2)此类给三角函数值求三角函数值的问题一般是通过考察条件中的角和问题中的角的关系,然后通过诱导公式、同角三角函数关系式、和差角公式进行计算.注意到,由诱导公式知,结合条件由同角三角函数关系式可求出,注意公式使用时要考察角的范围从而确定三角函数值的符号.
试题解析:(1)原式=            3分
                7分
(2)由,得
       10分

所以                      14分
考点:同角三角函数的关系、三角函数的诱导公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设向量.(1)若,求的值;
(2)设函数,求的最大、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数的图像关于直线对称,求的最小值;
(2)若存在,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,一个半圆和长方形组成的铁皮,长方形的边为半圆的直径,为半圆的圆心,,现要将此铁皮剪出一个等腰三角形,其底边.

(1)设,求三角形铁皮的面积;
(2)求剪下的铁皮三角形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为且满足.
(I)求角的大小;
(II)求的最大值,并求取得最大值时角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.




.
(1)从上述五个式子中选择一个,求出常数
(2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,.求:
(I)求函数的最小正周期和单调递增区间;
(II)求函数在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,
(1)求函数的最大值和最小值;
(2)设函数上的图象与轴的交点从左到右分别为,图象的最高点为,
的夹角的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,设函数.
(1)求函数的最大值;
(2)在中,角为锐角,角的对边分别为,且的面积为3,,求的值.

查看答案和解析>>

同步练习册答案