精英家教网 > 高中数学 > 题目详情
10.已知在($\root{3}{x}$-$\frac{1}{2\root{3}{x}}$)n(n∈N*)的展开式中,第6项为常数项,那么其展开式中共有3项是有理项.

分析 写出二项展开式的通项,由第6项为常数项求得n=10,再由$\frac{10-2r}{3}$为整数求得r值,则答案可求.

解答 解:($\root{3}{x}$-$\frac{1}{2\root{3}{x}}$)n(n∈N*)的展开式的通项${T}_{r+1}={C}_{n}^{r}(\root{3}{x})^{n-r}•(-\frac{1}{2\root{3}{x}})^{r}$=$(-\frac{1}{2})^{r}•{C}_{n}^{r}•{x}^{\frac{n-2r}{3}}$.
∵第6项为常数项,∴$\frac{n-10}{3}=0$,得n=10.
要使$(-\frac{1}{2})^{r}•{C}_{n}^{r}•{x}^{\frac{n-2r}{3}}$为有理项,则$\frac{10-2r}{3}$为整数,
∴当r=2,5,8时,$\frac{10-2r}{3}$为整数,
∴展开式中共有3项是有理项.
故答案为:3.

点评 本题考查二项式定理的应用,理解有理项的概念是关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{{x}^{2}}{2m}+\frac{{y}^{2}}{m-4}$=1的一条渐近线斜率大于1,则实数m的取值范围(  )
A.(0,4)B.(0,$\frac{4}{3}$)C.(0,2)D.($\frac{4}{3}$,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设点F(0,$\frac{1}{2}$),动圆P经过点F且和直线y=-$\frac{1}{2}$相切,记动圆的圆心P的轨迹为曲线E.
(1)求曲线E的方程;
(2)过点F(0,$\frac{1}{2}$)的直线l与曲线E交于P、Q两点,设N(0,a)(a<0),$\overrightarrow{NP}$与$\overrightarrow{NQ}$的夹角为θ,若θ≤$\frac{π}{2}$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数$f(x)=\frac{3}{sinx}-\frac{1}{tanx},x∈(0,\frac{π}{2})$的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.7人站成一排,求满足下列条件的不同站法((用数字作答)):
(Ⅰ)甲、乙之间隔着2个人;
(Ⅱ)甲、乙、丙3人中从左往右看由高到底(3人身高彼此不同);
(Ⅲ)若甲、乙两人坐标号为1,2,3,4,5,6,7的七把椅子中的两把,要求每人的两边都有空位.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an} 通项公式为an=Atn-1+Bn+1,其中A,B,t 为常数,且t>1,n∈N*.等式(x2+2x+2)10=b0+b1(x+1)+b2(x+1)2+…+b20(x+1)20,其中bi(i=0,1,2,…,20)为实常数.
(1)若A=0,B=1,求$\sum_{n=1}^{10}{{a_n}{b_{2n}}}$ 的值;
(2)若A=1,B=0,是否存在常数t 使得$\sum_{n=1}^{10}{({2{a_n}-{2^n}}){b_{2n}}}$=2046?若存在,求常数t 的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a=$(\frac{1}{3})^{\frac{4}{5}}$,b=$(\frac{1}{4})^{\frac{4}{5}}$,c=$(\frac{1}{3})^{\frac{3}{5}}$,则(  )
A.a<b<cB.c<a<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求导数:
(1)y=x3ex+2x2
(2)y=$\frac{{x}^{3}+1}{{x}^{2}}$+$\sqrt{{x}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和Sn=n2+n,数列{bn}满足:bn=$\sqrt{{2^{a_n}}}$.
(1)求数列{bn}的通项公式;
(2)令cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案